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Ph 12c

Homework Assignment No. 5
Due: 8pm, Thursday, 12 May 2016

1. Light bulb in a refrigerator

A refrigerator that draws 50 W of power is contained in a room at tempera-
ture 300◦K. A 100 W light bulb is left burning inside the refrigerator. Find
the steady-state temperature inside the refrigerator assuming it operates
reversibly and is perfectly insulated.

2. Imperfectly insulated refrigerator

An ideal (reversible) air conditioner cools a room to temperature τm < τh,
where τh is the temperature outdoors. Meanwhile, an ideal (reversible)
refrigerator in the room cools drinks to temperature τl < τm. Because
the refrigerator is not perfectly insulated, heat flows into the refrigerator
from the room at the rate Q̇1 = A1(τm − τl), and because the room is
not perfectly insulated, heat flows into the room from outdoors at the rate
Q̇2 = A2(τh−τm). In the steady state, heat is removed from the refrigerator
at the same rate it flows in. Heat is removed from the room by the air
conditioner and also by the flow of heat from the room into the refrigerator;
in the steady state the total rate of heat removal from the room matches the
total rate for heat entering the room due to exhaust from the refrigerator
combined with the flow of heat from outdoors.

(a) In the steady state, find the total power Ptotal (rate of work done per
unit time) expended by the refrigerator and air conditioner together.
As a check, verify that your answer makes sense for τm = τh and for
τm = τl.

(b) Find the optimal value τopt
m of τm which minimizes Ptotal. As a check,

verify that τopt
m = τl in the case τh = τl. Also check that your answer

makes sense in the limit A1 � A2 and in the limit A1 � A2. Explain.

(c) Assuming A1 = A2, find the optimal value of Ptotal. Check your answer
by verifying that Ptotal = 0 for τh = τl.
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3. Photonic heat engine

Consider a heat engine undergoing a Carnot cycle, where the working fluid
is a photon gas rather than a classical ideal gas. In the first stroke the gas
expands isothermally at temperature τh from the initial volume V1 to the
final volume V2. In the second stroke it expands isentropically to volume V3,
cooling to temperature τl. In the third stroke it is compressed isothermaly
at temperature τl to volume V4, and in the fourth stroke it is compressed
isentropically back to volume V1, heating to temperature τh.

(a) The energy per unit volume of a photon gas is U/V = Aτ4, where
A = π2/15h̄3c3. Use the thermodynamic identity

dU = τdσ − PdV

to find the entropy σ of the gas, expressed in terms of A, τ , and V .
Assume that the entropy is zero at τ = 0.

(b) Use the thermodynamic identity again to express the pressure P in
terms of A, τ , and V .

(c) Calculate the work done W12 and the heat added Q12 during the first
stroke of the cycle, expressed in terms of A, τh, V1 and V2. Verify that
Q12 −W12 is the change in the internal energy of the gas.

(d) Express the work W34 done by the gas in the third stroke (a negative
number), in terms of A, τl, V3 and V4.

(e) Use the condition σ = constant during the isentropic strokes to express
V3 and V4 in terms of τh, τl, V1, and V2.

(f) Find the work W23 done during the second stroke and the work W41

done during the fourth stroke.

(g) Express the net work W = W12 + W23 + W34 + W41 done during the
complete cycle in terms of A, τh, τl, V1 and V2. Comparing to Q12,
check that the engine achieves the ideal Carnot efficiency.

4. Bose condensation in two dimensions

Consider an ideal gas of non-relativistic spin-0 bosons, at temperature τ , in
a two–dimensional box of side L.

(a) Find the two–dimensional density of states factor D(ε).



3

(b) Express the activity λ ≡ eµ/τ in terms of N0, the number of particles in
the ground orbital. Use the convention that the energy of the ground
orbital is ε0 = 0.

(c) Find Ne(τ), the number of particles in excited orbitals. You may assume
that the box is big enough so that the sum over states can be replaced
by an integral. Be sure to use the formula found in (b) for λ, not the
N0 → ∞ limit of that formula. Your answer for Ne will therefore be
expressed in terms of N0. Hint:

∫
dx(aex − 1)−1 = ln(a− e−x).

(d) Find the two–dimensional Einstein condensation temperature τE . This
is the smallest temperature such that, for τ > τE , the fraction N0/(N0+
Ne) of particles in the ground orbital vanishes in the limit L → ∞.
(The limit is to be taken with the density (N0 + Ne)/L2 held fixed.)

5. Heat capacity of graphene

Geim and Novoselov received the 2010 Nobel Prize in Physics for their stud-
ies of graphene, a single layer of carbon atoms bonded into a two-dimensional
hexagonal lattice. Remarkably, electrons in graphene behave like relativistic
massless fermions; for each value of the wavenumber ~k = (kx, ky), there are
two single-particle orbitals, with energies

ε±(~k) = ±h̄v|~k|.

The Fermi energy is εF = 0; hence at zero temperature the orbitals with neg-
ative energy are occupied, and the orbitals with positive energy are empty.

Assuming the electrons can be treated as an ideal gas, and that there
are two spin states for each orbital, the internal energy of the electrons has
the form

U(τ)− U(0) =
1
3
γAτ3,

where A denotes the area, and hence the electron heat capacity is C = γAτ2.
Find γ. (Hint:

∫∞
0 dx x2/(ex + 1) = 1.803.)


