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[KK 2.3] Quantum harmonic oscillator.

(a)

The multiplicity function of a system of N harmonic oscillators of fre-
quency w with quantum number n is given by Eq. (1.55) of Kittel&Kroemer:
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where we used N > 1. The entropy of the system is the logarithm of the
expression above. Using Sterling formula we can write

(N +n)!

o(N,n) = log ( Nl

) ~ (N 4 n)log(N +n) — nlogn — NlogN.

In order to find the equilibrium temperature, we need an expression of the
entropy o(N,U) as a function of the energy, not the quantum number n.
The total energy of the system is U = nfw. Therefore,

1
o(N,U) = = [(Nh/.u +U)log(Nhw +U) — UlogU — Nhwlog N|.

Now, we are ready to differentiate o(N,U) to find the equilibrium tem-
perature
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This gives
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[1] The moment-generating function and the central limit theorem.

(a) From the definition, we have
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where we have defined 2/ = x — t. Then
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(b) We expand X in power series:
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Comparing this expression with
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gives (22" 1) =0 and
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We use the double factorial notation:
L (2n)!
2n — N = 21 —1) =
n-vr=T[Ci- =505

=1

(c) As all the z;’s are independent, the integrand factorizes:
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with X7 = 0 we have
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In the limit N — oo, using the indentity
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we get
lim Uy(t) = et2X2/2,
N—o00
which is the moment-generating function of a Gaussian distribution with
0’2 = X2.

The fact that o is independent of N is because of the normalizing factor
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[2] Biased coin.

In the large N limit, we can treat the function lnp(n) as “continuous”. We
have:
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This expression should be evaluated at n = pN, which gives

n(N —n)
o) = -~ Np(1—p).
For p = 3, we have 07 = X

[3] Probability of a large deviation
(a) Define 2’ =z /o, a =t/o, then

Px>t

20= s [ v

Pazt) = o= [ af(~ae ") (_—1>

note: —re =

Integration by parts gives:
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Therefore A = B = 1.

(b) a =10 gives
o—50 o
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