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[1] Energy Fluctuation (Problem 3.4 of Kittel/Kroemer)
Note first that:
((e=(e)?) = (¢ = 2¢(e) +()*) = () — (&),

Next we write the partition as a function of f = 1/7 which would be a more
natural definition of temperature.

7 = Z exp(—p0¢;)
Then
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JFrom these, with d3/dr = —1/72,
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[2] Energy Fluctuation (Problem 3.11 of Kittel/Kroemer)

In one dimension, the orbital energies are, €, = €;n?, where €; = (h?/2M)(7/L)?
and n as a positive integer. The single-particle partition function is
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where
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is the one-dimensional quantum concentration analogous to the three-dimensional
quantum concentration n¢g defined in (62) and (63).

For N particles: Zy = Z{ /N,

F=—7logZn
=Tlog N! — 7N log Z;
=7(Nlog N — N) —7Nlog(ng, L)
= 7N[log(n/ng,) — 1,

where n = N/L. With the help of % logng, =1/27:

0 = —(0F/07)n = Nlog(ng, /n) +3/2],

which we should compare with (76).

[3] Model of Large Reservoir

(a). The total entropy of 2-subsystems is defined as,

Stotal = SI(EI) + S2(E2) (Sl)
So that the change in total entropy, dSiotai, iS
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dSiotal = BiElldEl + T‘EZdEQ =0 (S2)

Because. total energy, E = Eq 4+ FE>, is constant, i.e., dE = dE; + dF; =0, or

dE, = —dF; (S3)
then (2) becomes,
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Recall that temperature, 7, is defined as. % = g—g. So that we have 1, = 73.

To prove that it’s a maximum, we first note that

9Siota s 1 1
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Taking the second derivative, using the chain rule and eq.(S3), we find:
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Since the specific heat Cy = 9F;/97; is positive, we find a local maximum for
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(b). We want to generalize the above to the N-subsystem case. Let’s start
with N = 2. It has been shown in part (a) that at thermal equilibrium (total
entropy is maximized), 7 = To.

Suppose that a system consisting of k& subsystems reaches thermal equilibrium

when 71 = 75 - -+ = 7, = 7. After a system consisting of k subsystems reaches

thermal equilibrium, it can be regarded as a system with temperature 7 and
k

energy I =), F; and entropy S(z).

Now, we put it together with the (k + 1)** system. It’s total entropy is
Stot = S(k)(E) + Sk+1(Ek+1).

Via the argument of part (a), the two reach thermal equilibrium when 7 = 754 .

Through mathematical induction, we generalized the result in (a) to any num-
ber of subsystem.

(c) For an N-indetical subsystem each with entropy S(E/N), where { = E/N
is the energy of each subsystem. Then the total entropy is,

Stoal(E) = NS(5) = NS(€) (51

Taylor expanding the total entropy,
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So,
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For large N the second term can be ignored. Notice that we can express
025/0¢? = a%% = 8%(1/7’) = %%(1/7’) = —1/(C,7?), where C, = 9¢/0t



[4] Atoms and Photons

(a).The rate of going from stat g to e is
N(g)I'(g —e).
The rate of going from stat e to g is
N(e)I'(e — g).
Therefore, at equilibrium

dN (e)
dt

=N(g)T'(g —e) — N(e)T'(e » g) =0.
And
N(g)T'(g — ¢) = N(e)I'(e — g).
(b). From (a)
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[5] Anisotropic Well
(a).
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(b).Since it’s distinguishable

Zn = ZZZZZZ .. Z Z Z ﬂ exp(—g(wﬂ”bm + wonge + wsngs)) =
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(c).
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(d). As 7 — o0, we Taylor expand the exponential e* ~ 1 + x to find
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