
Physics 12c - Problem Set 2 - Solutions

April 22, 2016

[1] Energy Fluctuation (Problem 3.4 of Kittel/Kroemer)

Note first that:

〈(ε− 〈ε〉)2〉 =
〈
ε2 − 2ε〈ε〉+ 〈ε〉2

〉
= 〈ε2〉 − 〈ε〉2.

Next we write the partition as a function of β = 1/τ which would be a more
natural definition of temperature.

Z =
∑

i

exp(−βεi)

Then

U = 〈ε〉 =
1
Z

∑
i

εi exp(−βεi) = − 1
Z

∂Z

∂β

〈ε2〉 =
1
Z

2∑
i

exp(−βεi) =
1
Z

∂2Z

∂β2
.

¿From these, with dβ/dτ = −1/τ2,

τ2

(
∂U

∂τ

)
V

= τ2

(
∂U

∂β

)
V

∂β

∂τ
= −

(
∂U

∂β

)
V

=
∂

∂β

(
1
Z

∂Z

∂β

)
=

1
Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

= 〈ε2〉 − 〈ε〉2

[2] Energy Fluctuation (Problem 3.11 of Kittel/Kroemer)

In one dimension, the orbital energies are, εn = ε1n
2, where ε1 = (~2/2M)(π/L)2

and n as a positive integer. The single-particle partition function is

Z1 =
∑

n

exp(−ε1n
2/τ) ≈

∫ ∞
0

exp(−ε1n
2/τ)dn = (πτ/4ε1)1/2 =

√
L2Mτ

2π~2

(πτ/4ε1)1/2 =nQ1L,

where

nQ1 =
(

Mτ

2π~2

)1/2

= (nQ)1/3

1



is the one-dimensional quantum concentration analogous to the three-dimensional
quantum concentration nQ defined in (62) and (63).

For N particles: ZN = ZN
1 /N !,

F = −τ log ZN

= τ log N !− τN log Z1

= τ(N log N −N)− τN log(nQ1L)
= τN [log(n/nQ1)− 1],

where n = N/L. With the help of ∂
∂τ log nQ1 = 1/2τ :

σ = −(∂F/∂τ)n = N [log(nQ1/n) + 3/2],

which we should compare with (76).

[3] Model of Large Reservoir

(a). The total entropy of 2-subsystems is defined as,

Stotal = S1(E1) + S2(E2) (S1)

So that the change in total entropy, dStotal, is

dStotal =
∂S1

∂E1
dE1 +

∂S2

∂E2
dE2 = 0 (S2)

Because. total energy, E = E1 + E2, is constant, i.e., dE = dE1 + dE2 = 0, or

dE1 = −dE2 (S3)

then (2) becomes,

0 =
∂S1

∂E1
dE1 −

∂S2

∂E2
dE1

or,

∂S1

∂E1
=

∂S2

∂E2

Recall that temperature, τ , is defined as. 1
τ = ∂S

∂E . So that we have τ1 = τ2.

To prove that it’s a maximum, we first note that

dStotal(E1, E − E1) =
∂Stotal

∂E1
dE1 ⇒ ∂S

∂E1
=

1
τ1
− 1

τ2

Taking the second derivative, using the chain rule and eq.(S3), we find:

∂2S

∂E2
1

∣∣∣
τ2=τ1

=
(
− 1

τ2
1

∂τ1

∂E1
+

1
τ2
2

∂τ2

∂E1

) ∣∣∣
τ2=τ1

=
(
− 1

τ2
1

∂τ1

∂E1
− 1

τ2
2

∂τ2

∂E2

) ∣∣∣
τ2=τ1

.

Since the specific heat CV = ∂Ei/∂τi is positive, we find a local maximum for
Stotal.
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(b). We want to generalize the above to the N-subsystem case. Let’s start
with N = 2. It has been shown in part (a) that at thermal equilibrium (total
entropy is maximized), τ1 = τ2.
Suppose that a system consisting of k subsystems reaches thermal equilibrium
when τ1 = τ2 · ·· = τk = τ . After a system consisting of k subsystems reaches
thermal equilibrium, it can be regarded as a system with temperature τ and
energy E =

∑k
i=1 Ei and entropy S(k).

Now, we put it together with the (k + 1)th system. It’s total entropy is

Stot = S(k)(E) + Sk+1(Ek+1).

Via the argument of part (a), the two reach thermal equilibrium when τ = τk+1.

Through mathematical induction, we generalized the result in (a) to any num-
ber of subsystem.

(c) For an N-indetical subsystem each with entropy S(E/N), where ξ = E/N
is the energy of each subsystem. Then the total entropy is,

Stotal(E) = NS(
E

N
) = NS(ξ) (S4)

Taylor expanding the total entropy,

Stot(E + ∆E) =Stot(E) +
∂

∂E
Stot(E)∆E +

1
2

∂2

∂E2
Stot(E)(∆E)2 +O(∆E)3

=NS(ξ) + N
∂S(ξ)
∂E

∆E +
1
2
N

∂2S(ξ)
∂E2

(∆E)2 +O(∆E)3

=NS(ξ) + N
∂S(ξ)

∂ξ

∂ξ

∂E
∆E +

1
2
N

∂2S(ξ)
∂ξ2

(
∂ξ

∂E

)2

(∆E)2 +O(∆E)3

=NS + N
∂S

∂ξ

(
∆E

N

)
+

1
2
N

∂2S

∂ξ2

(
∆E

N

)2

+O(∆E)3

So,

∆Stotal =
∂S

∂ξ
∆E +

1
2N

∂2S

∂ξ2
∆E2 =

∆E

τ
− (∆E)2

2NCvτ2

For large N the second term can be ignored. Notice that we can express
∂2S/∂ξ2 = ∂

∂ξ
∂S
∂ξ = ∂

∂ξ (1/τ) = ∂τ
∂ξ

∂
∂τ (1/τ) = −1/(Cvτ2), where Cv = ∂ξ/∂τ
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[4] Atoms and Photons

(a).The rate of going from stat g to e is

N(g)Γ(g → e).

The rate of going from stat e to g is

N(e)Γ(e → g).

Therefore, at equilibrium

dN(e)
dt

= N(g)Γ(g → e)−N(e)Γ(e → g) = 0.

And

N(g)Γ(g → e) = N(e)Γ(e → g).

(b). From (a)

exp(−Eg/τ)
exp(−Ee/τ)

=
N(g)
N(e)

=
Γ(e → g)
Γ(g → e)

= 2

So
Ee − Eg

τ
=

~ω

τ
= log(2)

τ =
~ω

log 2

[5] Anisotropic Well

(a).

Z1 =
∑
n1

∑
n2

∑
n3

exp(−~
τ

(ω1n1 + ω2n2 + ω3n3))

=
∑
n1

exp(−~ω1n1

τ
)
∑
n2

exp(−~ω2n2

τ
)
∑
n3

exp(−~ω3n3

τ
)

=
1

(1− exp(−~ω1
τ )(1− exp(−~ω2

τ )(1− exp(−~ω3
τ )

(b).Since it’s distinguishable

ZN =
∑
n11

∑
n12

∑
n13

∑
n21

∑
n22

∑
n23

· · ·
∑
nN1

∑
nN2

∑
nN3

N∏
k=1

exp(−~
τ

(ω1nk1 + ω2nk2 + ω3nk3)) = ZN
1 .

(c).

U = τ2 ∂ log(Z)
∂τ

= N

3∑
n=1

~ωn

exp(~ωn

τ )− 1

(d). As τ →∞, we Taylor expand the exponential ex ≈ 1 + x to find

U → N

3∑
n=1

~ωn

1 + ~ωn

τ − 1
= 3Nτ

∂U

∂τ
= 3N
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