
Physics 12c, Problem Set 4 Solutions

April 29, 2016

Ascent of sap in trees (Pr. 5.12 of Kittel/Kroemer)

The chemical potential must be the same at the top (h = H) and bottom (h = 0)
of the tree. It is given by

µ = τ log(n/nQ) + Mgh. (0.1)

We can write n = r(h)n0, where n0 is the vapor pressure of air at the roots,
and r is a function of height such that r(0) = 1 and r(H) = 0.9. Then the the
chemical potential becomes

µ = τ log(rn0/nQ) + Mgh = τ log r + Mgh + const, (0.2)

where we used the fact that τ log(n0/nQ) is a constant independent of height
(assuming the temperature does not depend on height).

Thus, the equality of chemical potentials at h = 0 and h = H implies

τ log r(H) + MgH = τ log r(0) = τ log 1 = 0, (0.3)

so that

H = −τ log r(H)
Mg

. (0.4)

For r(H) = 0.9, this evaluates to H being about 1500 meters. This is greater
than the height of any trees on Earth, so trees can transport water to the leaves
without expending energy.

[1] Isentropic model of the atmosphere

(a) The consider a slab of gas with volume A× dz. The gravitational force is

Fg = ρdV g = (ρAdz)g (1.1)

where ρ is density. The force due to the gradient of pressure is

Fb = −Adp (1.2)

At equilibrium,

Fb = Fg

dp

dz
= −ρg = −mNg

V
= −mgp

τ
(1.3)
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(b)

dτ

dz
=

dτ

dρ

dp

dz
=

n− pdn
dp

n2

dp

dz
. (1.4)

Since pn−γ is constant.

d(pn−γ)
dp

= n−γ − pγn−(γ+1) dn

dp
= 0

dn

dp
=

n

γp
. (1.5)

So,

dτ

dz
= − 1

n
(1− 1

γ
)(

mgp

τ
)

= −mg(1− 1
γ

) (1.6)

(c)

dτ

dz
= −9.4K/km (1.7)

[2] Fluctuations in particle number

(a)
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Z
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∣∣∣
τ

=
1
Z

1
τ

∑
s

N2
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Z2
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(Nsµ−εs)/τ
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1
τ
〈N2〉 − 1

Z
∂Z
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〈N〉

=
1
τ
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τ
〈N〉2 (2.1)

So,

τ
∂〈N〉
∂µ

∣∣∣
τ

= 〈N2〉 − 〈N〉2 = 〈(N − 〈N〉)2〉 (2.2)

(b) For classical ideal gas,

〈N〉 =
∑

s

exp[(µ− εs)/τ ] (2.3)

So,

τ
∂〈N〉
∂µ

∣∣∣
τ

= 〈N〉. (2.4)

¿From (a),

〈N〉 = 〈(∆N)2〉
〈(∆N)2〉
〈N〉2

=
1
〈N〉

(2.5)

Hence, for N � 1, the fluctuations in particle number are small.
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[3] Ideal gas adsorption

Using the distribution function f(ε) = e(µ−ε)/τ , the particle number N of a
classical ideal gas in a box with volume V can be expressed as

N = eµ/τ
∑

a

e−εa/τ = eµ/τ (nQV ) ,

where the sum is over all single-particle orbitals, and nQ =
(

mτ
2π~2

)3/2 is the
quantum concentration. Hence the chemical potential is

µ = τ ln (n/nQ) ,

where n is the concentration of particles per unit volume.

(a) Use the same method to find the chemical potential of a two-dimensional
classical ideal gas, expressed in terms of the concentration n̄ of particles
per unit area A.

Approximating the sum over orbitals by an integral over wave numbers we have

N = eµ/τA
∫

dkxdky

(2π)2
exp

(
− (~kx)2 + (~ky)2

2mτ

)
= eµ/τA

( mτ

2π~2

)
. (3.1)

Therefore,

eµ/τ =
n̄

n̄Q
, (3.2)

where

n̄ =
N

A
, n̄Q =

mτ

2π~2
, (3.3)

and hence

µ = τ ln (n̄/n̄Q) . (3.4)

Suppose that the walls of a box containing a classical ideal gas with tem-
perature τ can adsorb the gas particles, where it costs energy ∆ to remove an
adsorbed particle from the wall. The adsorbed particles move freely along the
walls, and so can be modeled as an ideal gas confined to two dimensions. The
adsorbed particles are in thermal and diffusive equilibrium with the gas particles
contained inside the box.

(b) The concentration n̄ of adsorbed particles per unit area is related to the
concentration n of gas particles per unit volume according to

n̄ = Cn

where C depends on ∆, τ , and the particle mass m. Find C.

We denote the chemical potential for the three-dimensional gas as µ3 and for
the two-dimensional gas as µ2. In diffusive equilibrium

(µ3)int + (µ3)ext = (µ2)int + (µ2)ext , (3.5)

and the external chemical potential difference is

(µ3)ext − (µ2)ext = ∆ (3.6)
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if it costs energy ∆ to remove a particle from the two-dimensional gas and add
it to the three-dimensional gas. From (a) we have

(µ2)int − (µ3)int = τ ln (n̄/n̄Q)− τ ln (n/nQ) = ∆; (3.7)

dividing by τ and exponentiating we obtain
n̄

n̄Q
=

n

nQ
e∆/τ , (3.8)

or

n̄ =
n̄Q

nQ
e∆/τn = Cn, where C =

√
2π~2

mτ
e∆/τ . (3.9)

[4] Diffusive contact

Two identical systems S1 and S2 are both in thermal contact with a large reser-
voir and in diffusive contact with one another. For both systems, the free energy
F is related to the particle number N by F = cN2, where c is an N -independent
constant (the same constant for both systems).

(a) A battery maintains a chemical potential difference

∆ = µ2,ext − µ1,ext > 0

between the two systems. In diffusive equilibrium, find the number N1 of
particles in S1 and the number N2 of particles in S2, expressed in terms
of ∆, c, and the total particle number N = N1 + N2.

Using the free energy, we find

F = cN2 ⇒ µ = ∂F/∂N = 2cN. (4.1)

In diffusive equilibrium,

µ1,total = µ1,ext + 2cN1 = µ2,total = µ2,ext + 2cN2. (4.2)

¿From N2 = N −N1 and ∆ = µ2,ext − µ1,ext we obtain

2cN1 = 2c(N −N1) + ∆ ⇒ 4cN1 = 2cN + ∆; (4.3)

hence

N1 = N/2 + ∆/4c and N2 = N/2−∆/4c. (4.4)

(b) Now the battery is disconnected, and useful work is extracted isothermally
as the particles flow slowly from S1 to S2 until diffusive equilibrium is
reestablished. How much work is extracted?

In a reversible isothermal process, the work done by the system is the decrease
in the system’s Helmholtz free energy. Before the battery is disconnected the
total free energy is

Finitial = cN2
1 + cN2

2 = c(N/2 + ∆/4c)2 + c(N/2−∆/4c)2 = cN2/2 + ∆2/8c.

After the battery is disconnected and diffusive equilibrium is reestablished with
∆ = 0, the total free energy is

Ffinal = cN2
1 + cN2

2 = 2c(N/2)2 = cN2/2. (4.5)

The work done W is the change in free energy

W = Finitial − Ffinal = ∆2/8c. (4.6)
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