
Physics 12c, Problem Set 6 Solutions

May 19, 2016

[1] Thermal ionization of hydrogen (Pr. 9.2 of Kittel/Kroemer)

(a) We can directly apply Eq. (9.35) of Kittel and Kroemer,∏
j

n
νj

j = K(τ), (1.1)

with n1 = [e], ν1 = 1, n2 = [H+], ν2 = 1, and n3 = [H], ν3 = −1. Then
K(τ) is given by Eq. (9.34),

K(τ) =
∏
j

nQ j
νj exp[−νjFj/τ ] =

nQ enQ H+

nQ H
exp[(FH − Fe − FH+)/τ ].(1.2)

However, nQ H+ ≈ nQ H since their mass is nearly the same, so using
I = FH − Fe − FH+ for the energy required to ionize hydrogen we find
that K(τ) ≈ nQ e exp[−I/τ ], so

[e][H+]/[H] ≈ nQ e exp[−I/τ ]. (1.3)

If [e] = [H+], this equation can be solved for [e] to yield

[e] ≈ [H]1/2n
1/2
Q exp[−I/(2τ)]. (1.4)

(b) The relative concentration of H(exc) follows from the standard Boltzmann
factor argument:

[H(exc)]
H

= 4 exp
[
−3

4
I

τ

]
. (1.5)

where the factor of 4 comes from the degeneracy of the first excited state
of hydrogen atom (n=2).

The ionization energy of hydrogen is 13.6 eV. On the surface of the Sun,
τ ≈ 0.43 eV, and nQ ≈ 8.4× 1020 cm−3.

Hence, while [H(exc)] ≈ 2.08 × 1013 cm−3, we find that [e] ≈ 1.3 × 1015

cm−3.
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[2] Particle-antiparticle equilibrium (Pr. 9.5 of Kittel/Kroemer)

(a) With ν+ = ν− = 1 and n+ = n− = n, the law of mass action gives

n+n− = n2 = n2
Q exp

(
−F+

int + F−int

τ

)
,

where nQ is the same for both species since they have the same mass
(assumed spinless). The energy released when A+ annihilates with A− has
a minimum ∆ when both particles are at rest so that the energy released
just comes from their internal (free) energy. Therefore, ∆ = F+

int + F−int,
and we have

n = nQ exp
(
−∆

2τ

)
, (2.1)

(b) For the electron (no internal structure), ignoring spin, the quantum con-
centration is

nQ =
( meτ

2π~2

)3/2

≈ 1.27× 1019cm−3,

for T = 300K. Assume ne− = nhole = n, and ∆/τ = 20. Then,

n = nQ exp
(
−1

2
∆
τ

)
≈ 5.8× 1014cm−3. (2.2)

(c) For a particle of spin s, the spin contribution to the internal partition
function is Zint = 2s + 1, which is the number of independent spin states.
For spin 1

2 , Zint = 2. Assuming that ∆ is a measured quantity so that
spin contributions are already included, the only thing we need to correct
for is the quantum concentration nQ → ZintnQ = 2nQ, where nQ as usual
is for the monatomic, spinless particle. Therefore, the answer from part
(a) becomes:

n = 2nQ exp
(
−∆

2τ

)
. (2.3)

[3] Latent Heat of melting

CA = Nατ3;Cb = Nβτ (3.1)

(a)

σ(τ) = σ(0) +
∫ τ

0

CP /τdτ. (3.2)

So,

σA =
1
3
Nατ3, σB = Nβτ (3.3)

(b)

U(τ) = Nε0 +
∫ τ

0

Cdτ. (3.4)

So,

UA =
1
4
Nατ4 + Nε0, UB =

1
2
Nβτ2 + Nε0 (3.5)
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(c)

µ =
(

∂U

∂N

)
σ

(3.6)

So,

UA = Nε0 +
1
4
Nα

(
3σA

Nα

)4/3

→ µA = ε0 −
1

3N
(UA −Nε0) = ε0 −

1
12

ατ4.

(3.7)

And,

UB = Nε0 +
1
2
Nβ

(
σB

Nβ

)2

→ µB = ε0 −
1
N

(UB −Nε0) = ε0 −
1
2
βτ2.

(3.8)

(d) Since µB < µA for small τ , B is favored at low temperature. At transition,
µA = µB . So,

τ2
m =

6B

α
(3.9)

(e)

L = τm∆σ =
1
3
Nατ4

m −Nβτ2
m = 6Nβ2/α (3.10)

[4] Latent Heat of BEC

Bose-Einstein condensation of an ideal gas may be regarded as a sort of first-
order phase transition, where the two coexisting phases are the “liquefied” con-
densate (the particles in the ground orbital) and the “normal” gas (the particles
in excited orbitals). The purpose of this problem is to calculate the latent heat
of this transition. Assume that the particles are spinless bosons with mass m.
For this problem you may express your answers in terms of the function

I(α) =
∫ ∞

0

dx
xα

ex − 1
.

(a) As for an nonrelativistic ideal gas in the classical regime, the pressure P
of a bosonic ideal gas is related to its internal energy U and volume V by
P = 2

3
U
V even when the temperature τ is below the Einstein condensation

temperature τE. Why?

In a cubic box with side L, the orbital labeled by integers nx, ny, nz has
energy

E(nx, ny, nz) =
~2π2

2mL2

(
n2

x + n2
y + n2

z

)
.

So for fixed nx, ny, nz, the energy scales like V −2/3, where V is the volume
of the box, and therefore

∂

∂V
E(nx, ny, nz) = −2

3
V −1E(nx, ny, nz)

In an isolated system (constant entropy), the pressure is

P = −
〈

∂E

∂V

〉
=

2
3

U

V
.
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(b) For a fixed particle number N � 1 and a nonzero temperature τ , the
gas is uncondensed when its volume is large enough. But as the gas is
compressed at constant temperature, Bose-Einstein condensation occurs
at some critical concentration n∗. Find this critical concentration.

When condensation occurs the chemical potential µ vanishes, and the
number of particles in excited orbitals matches the total number of parti-
cles:

n∗ =
N

V ∗ =
∫ ∞

0

dε D(ε)
1

eε/τ − 1

=
1

4π2

(
2m

~2

)3/2 ∫ ∞

0

dε
ε1/2

eε/τ − 1

=
1

4π2

(
2m

~2

)3/2

τ3/2 I (1/2) .

(4.11)

(c) As we continue to compress the gas at constant temperature beyond the
condensation concentration, the pressure remains constant as more and
more of the gas liquefies. Find this coexistence pressure Pcoex(τ).

The pressure is P = 2
3

U
V , where

U/V =
∫ ∞

0

dε D(ε)
ε

eε/τ − 1

=
1

4π2

(
2m

~2

)3/2 ∫ ∞

0

dε
ε3/2

eε/τ − 1

=
1

4π2

(
2m

~2

)3/2

τ5/2 I (3/2) .

(4.12)

(d) Condensation continues until all particles are in the ground orbital, which
occurs at essentially zero volume if the temperature is nonzero. Use the
Clausius-Clapeyron relation to express the latent heat L of the transition
in terms of the temperature τ . (The latent heat is the amount of heat
released during the liquefication of the gas at temperature τ .)

The latent heat is

L = τ∆v

(
dP

dτ

)
coex

,

where ∆v = v∗ = (n∗)−1. From (c) we have(
dP

dτ

)
coex

=
5
2

P

τ
=

5
3τ

U

V
;

therefore,

L =
5
3

U/V

n∗
=

5
3

I(3/2)τ5/2

I(1/2)τ3/2
= 1.284 τ.
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(e) Now check your expression for L by computing it another way. Calculate
the work done as the gas is compressed from concentration n∗ to zero
volume, and calculate how the internal energy U changes as the gas is
compressed. Use the first law to find the latent heat L.

The work done during compression is

W = P∆V =
2
3

U

V
∆V =

2
3
N

U/V

n∗
=

2
3
Nτ

I(3/2)
I(1/2)

.

The change in the internal energy is

∆U = −U

V
∆V = −Nτ

I(3/2)
I(1/2

.

The heat released as the gas “liquefies” is

−Q = −∆U + W =
(

1 +
2
3

)
Nτ

I(3/2)
I(1/2

;

hence the latent heat per particle is L = 5
3τ I(3/2)

I(1/2 , in agreement with (d).

[5] Boiling water on Mount Everest

a) The boiling temperature τ0 of water at sea level is such that its vapor pressure
matches the atmospheric pressure P0. At what temperature τ1 would water
boil if the atmospheric pressure were P1 instead? Treat the water vapor as
a classical ideal gas, and assume that the latent heat of vaporization per
particle L is independent of temperature. Also assume that the volume per
particle in liquid water is negligible compared to the volume per particle in
water vapor.

According to the Clausius-Clapeyron relation,(
dP

dτ

)
coex

=
L

τ∆v
,

and
∆v = vg − vl ≈ vg = τ/P,

by the ideal gas law; hence (
dP

dτ

)
coex

=
L

τ2
P.

Integrating along the coexistence curve, we find that coexistence pressure
and temperature are related by

ln(P1/P0) = L

(
− 1

τ1
+

1
τ0

)
,

or
1
τ1

=
1
τ0

+
1
L

ln(P0/P1).
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b) Suppose that the atmosphere is an isothermal ideal gas of molecular nitro-
gen at 300◦K. Find the boiling temperature of water at the top of Mount
Everest. The latent heat of vaporization of water is 41 kJ per mole, and
Mount Everest is 8.8 km high.

For an atmosphere in thermal and diffusive equilibrium at temperature τ̄ ,
the chemical potential is independent of the altitude h, hence the pressure
varies with h as

Ph = P0e
−mgh/τ̄ ,

or
ln(P0/Ph) = mgh/τ̄ ,

and therefore (using part (a))

1
τh

=
1
τ0

+
1
τ̄

mgh

L
.

The molecular weight of N2 is 28 (28 g per mole), so

mgh

L
=

(.028)(9.8)(8800)
41, 000

≈ .059.

Using τ̄ = 300◦K and τ0 = 373◦K (the boiling temperature of water at
sea level), we obtain

1
τh

=
1

373
+

.059
300

,

or
τh = 348◦K = 75◦C.
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