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[2] Scaling hypothesis from Landau theory
From
G(ea A) = [F(67£) - /\f]stat wrt &
and ) )
Fle,) = S Acg® + 1 BE",

we infer that

G(QPe, Q1)) = BAQ%? + iBg‘* — qug]

stat wrt &

0 BA& (9@*1)/25)2 + iB (9*1/45)4 —A (qug)}

stat wrt £

Now we want to show that the right-hand side becomes QG(e, \) for an appro-
priate choice of p and ¢. In fact if we choose (p—1)/2 = —-1/4 and ¢—1 = —1/4,
then the quantity inside the square brackets becomes a function of Q~1/4¢, and
we have

G(Pe,QI)\) = Q BAG (Q—1/4£)2 N %B (971/45)4 . <Ql/4£>:|

stat wrt &

But rescaling & by Q~/4 does not change the value of the quantity in square
brackets at its stationary point, and so we find

G(QPe, Q1)) = QG(e, \)

when we choose
p=1/2, ¢q=3/4.

[3] Critical exponents from the scaling hypothesis

(a) The order parameter is given by £ = — (%)T. Differentiating the scaling

hypothesis with respect to A gives:
QIE(Pe, QIN) = Q&(e, ) (S1)

We set A = 0, and take the limit ¢ — 0~ (i.e. approach 7¢ from below)
while holding QP¢ fixed. This means that Q oc |e|"1/? = (—¢)~!/P since
€ < 0 in this case!. Furthermore, for Qe fixed, £(QP¢, 0) is just a constant.
Therefore,

9q 1-— q

~ Q1 ()T — -9
3 (=€) = A==

IWe usually want to study the scaling behavior while on the same side of 7¢, hence we
can take 2 as a positive quantity.




(b) Set € =0 in eq. (S1), and take the limit A\ — 0, while holding Q9 fixed,
i.e. Q oc A\~1/4. Therefore, we get

g1
£~ QI NS

(c¢) Recall that o = — (?Tf)w so the heat capacity is given by O = —7 (%QTC;) K

Differentiating the scaling hypothesis twice with respect to 7, we get
Q2P O\ (QPe, QIN) = QC) (€, \).
Set A = 0, and take the limit ¢ — 0 while holding ¢ fixed, i.e. 2

le|~1/P. Then,
p— 1
C’A~§22p71~\6|_21’1 = a=2-——.
p
(d) For p = 1/2 and ¢ = 3/4, we find « = 0, 8 = 1/2, vy =1, § = 3 as
expected.

(e) Using the expressions for 5 and ¢ from problem 2, we can write:

__a _ 0
1-g =1y
l-q _1-15 1 1
p p p(1+9) p (1+9)
Therefore, a = 2 —% = 2 — (1 + 6), which is known as the Griffiths

relation.

(f) Using the expressions for « and 8 from problem 2, we can write:

1 1
a=2-- = —-=2-aq,
p p
1—
527(]:2—04—g = g=2—04—6.
p p p

Therefore, v = %q—l =22—-a-p0)—(2—a) =2—a— 20, which is
known as the Rushbrooke relation.

[4] Equation of state from the scaling hypothesis

(a) Differentiating both sides of the scaling hypothesis
G(e,\) = Q7'G(QP6, Q1))
we find

(e, \) = — @f) = QILE(OPe, QIN) .

Now choose 2 so that QP = ¢!, or Q = e/, and we have

. . £ ) A A
§(e.0) = 00/rg (1,e7PA) = BT = ¢ (16‘1/”> =/ (e‘l“’) '

Therefore,




(b) Differentiating we find

0

A= e

F(e,§) = Ae€ + BE?,

and therefore
) 3
Xl =Al ¢+ Be ¢ = A (elfbf) + B (eib/?’f) ;

This has the form h({/e®) if a = b — 1 = b/3, which has the solution
b=3/2 and a = 1/2. The function h is

h(z) = Az + Ba3.

To check: in Landau theory, where p = 1/2 and ¢ = 3/4, the result from
(a) becomes

1—¢ 1/4 qg 3/4
e R B ik v R



