
Ph 12C Final Exam
Due: Friday, 10 June 2016, 5pm

• This exam is to be taken in one continuous time interval not to exceed 4
hours, beginning when you first open the exam. (You may take one 15
minute break during the exam, which does not count as part of the 4
hours.)

• You may consult the textbook Thermal Physics by Kittel and Kroemer, your
lecture notes, the online lecture notes, and the problem sets and solutions.
If you wish, you may use a calculator or computer for doing calculations.
No other materials or persons are to be consulted.

• There are four problems, each with multiple parts, and 100 possible points;
the value of each problem is indicated. You are to work all of the problems.

• The completed exam is to be handed in at the Ph 12 in-box in East Bridge.
All exams are due at 5pm on Friday June 10. No late exams will be
accepted.

• Good luck!

• Please respond to the TQFR survey. We value your feedback!
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1. First quantum correction to pressure – 30 total points

The pressure of an ideal gas can be expanded as a power series in n/nQ, where
n = N/V is the concentration and nQ = (mτ/2π~2)3/2 is the quantum concen-
tration. The first two terms in this expansion have the form

p = nτ

(
1 + α

n

nQ
+ · · ·

)
. (1)

In this problem you will compute the number α, for both fermions and bosons.

(a) (5 points) The (Fermi-Dirac or Bose-Einstein) distribution function f(ε)
can be expanded as a power series in exp(−(ε − µ)/τ). Write down the
first two terms in this expansion, for both fermions and bosons.

(b) (10 points) Using the approximation to f(ε) from (a), evaluate the particle
number

N =
∫

dε D(ε)f(ε),

where D(ε) is the density of orbitals. Now calculate the chemical potential
µ, including the first quantum correction, for both fermions and bosons.
Check that the leading term is what you expected.

(c) (10 points) Recalling that µ = (∂F/∂N)τ,V , integrate to find F (τ, V, N),
including the first quantum correction, for both fermions and bosons.

(d) (5 points) Now calculate the pressure, obtaining eq.(1), and find α, for both
fermions and bosons. In one case the first quantum correction makes the
pressure smaller than for a classical ideal gas with the same concentration
and temperature, and in the other case the first quantum correction makes
the pressure larger. Are the results what you expected?
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2. Fermions in a harmonic potential well — 20 total points

N ≫ 1 noninteracting fermions are in a one-dimensional harmonic potential
well with circular frequency ω. Assume that all the fermions have spin up,
so we don’t have to worry about the spin when counting states. Each orbital
(harmonic oscillator energy eigenstate) is either empty or singly occupied.

The N lowest orbitals are occupied in the ground state; denote the energies
of these occupied orbitals by E0

N > E0
N−1 > E0

N−2 > · · · > E0
1 . In an excited

state, the occupied orbitals have energies EN > EN−1 > EN−2 > · · · > E1.
Hence, relative to the ground state, the excited state has total energy

E = (EN − E0
N ) + (EN−1 − E0

N−1) + · · ·+ (E1 − E0
1).

A partition of a positive integer n is a way of writing n as a sum of positive
integers, and the function p(n) is the number of distinct partitions of n. For
example, 4 has five distinct partitions: 4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 =
1 + 1 + 1 + 1. Hence p(4) = 5

Counting partitions is a notoriously hard combinatorial problem, but as
depicted in the recent film The Man Who Knew Infinity starring Dev Patel and
Jeremy Irons, Ramanujan and Hardy, after a long struggle, found an formula
for p(n) which applies asymptotically for very large n:

p(n) ≈ eπ
√

2n/3

4n
√

3
.

You may use this formula to compute the thermodynamic properties at high
temperature of fermions in a harmonic well.

(a) (5 points) Denote by g(n) the number of excited states with energy E =
n~ω, and find how g(n) is related to p(n). Assume N ≥ n.

(b) (10 points) Assuming N ≥ n ≫ 1, find the entropy σ(n) and temperature
τ(n), where E = n~ω.

(c) (5 points) Express the heat capacity C = dE/dτ in terms of the tempera-
ture τ .
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3. Efficiency of a heat engine at peak power — 30 total
points

To achieve the optimal Carnot efficiency, a heat engine needs to operate very
slowly. A slow engine wastes less heat than a fast one, but on the other hand
has lower power output. In this problem we will analyze the efficiency of a heat
engine that produces optimal power.

As usual, we assume that the engine operates between two reservoirs with
temperatures τh and τl, where τh > τl. The working fluid undergoes a Carnot
cycle, but where the temperatures during the two isothermal strokes are τhw

and τlw such that
τh > τhw > τlw > τl.

During the hot isothermal stroke, the rate of heat flow from hot reservoir to
working fluid is proportional to the temperature difference x = τh − τhw. Like-
wise, during the cold isothermal stroke the rate of heat flow from the work-
ing fluid to the cold reservoir is proportional to the temperature difference
y = τlw − τl. Thus, increasing these temperature differences increases the rate
of heat flow (and hence the power), but also increases the amount of irreversible
heat flow, compromising efficiency.

Let’s assume that both isothermal heat strokes take time t, and that both
adiabatic strokes take negligible time. Therefore the heat flow during the hot
isothermal stroke is Qh = Ktx, and the heat flow during the cold isothermal
stroke is Ql = Kty, for some constant K. (We could relax these assumptions,
allowing the hot and cold strokes to take different amounts of time and have
different values of K, and allowing the adiabatic strokes to take nonnegligible
time. It would turn out, though, that our final answer for the efficiency at
peak power would be the same; these simplifying assumptions make the algebra
easier.)

(a) (5 points) Express the engines’s power output in terms of K, x, and y.

(b) (5 points) Assuming that the working fluid undergoes an ideal Carnot
cycle between temperatures τhw and τlw, express y, and the power output
from (a), in terms of x, τh, and τl.

(c) (15 points) For fixed τh and τl, find the value of x that maximizes the
power. For this optimal value of x, find also y, τhw and τlw. Hint: You’ll
have to solve a quadratic equation, which has two solutions. Be careful to
pick the physically relevant solution.

(d) (5 points) What is the efficiency η of the heat engine when it operates at
peak power? Compare to the Carnot efficiency ηC .
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4. Fun with partial derivatives — 20 total points

Recall that heat capacities at constant volume and pressure are defined as

CV = τ

(
∂σ

∂τ

)
V

, CP = τ

(
∂σ

∂τ

)
p

.

In this problem you will relate the difference CP −CV to two other experimen-
tally measurable quantities, the isothermal compressibility

KT = − 1
V

(
∂V

∂p

)
τ

and the isobaric thermal expansion coefficient

βP =
1
V

(
∂V

∂τ

)
p

.

(a) (5 points) If we regard the entropy σ as a function of τ and V , then

dσ =
(

∂σ

∂τ

)
V

dτ +
(

∂σ

∂V

)
τ

dV, (2)

and if we regard the volume V as a function of τ and p, then

dV =
(

∂V

∂τ

)
p

dτ +
(

∂V

∂p

)
τ

dp, (3)

Use eq.(2) and eq.(3) to find an expression for (∂σ/∂τ)p.

(b) (5 points) Using the result from (a) and a Maxwell relation, express
CP − CV in terms of τ , (∂V/∂τ)p, and (∂p/∂τ)V . Hint: To find the
relevant Maxwell relation, think about the partial derivatives of F (τ, V ).

(c) (5 points) Using eq.(3), express (∂p/∂τ)V in terms of (∂V/∂τ)p and
(∂V/∂p)τ

(d) (5 points) Express CP − CV in terms of τ , V , KT and βP .
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