Ph 219b/CS 219b

Exercises Due: Wednesday 9 February 2011

1.1 Generating the Clifford Group

Recall that the n-qubit $Pauli\ group$ is defined as

$$\mathcal{P}_n = \{ \boldsymbol{I}, \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \}^{\otimes n} \times \{ \pm 1, \pm i \}$$
 (1)

where X, Y, Z are the 2×2 Pauli matrices. That is, each element of \mathcal{P}_n is (up to an overall phase $\pm 1, \pm i$) a tensor product of Pauli matrices and identity matrices acting on the n qubits. The n-qubit Clifford group \mathcal{C}_n is the normalizer of the Pauli group – a unitary operator U acting on n qubits is contained in \mathcal{C}_n iff

$$UMU^{-1} \in \mathcal{P}_n \text{ for each } M \in \mathcal{P}_n$$
. (2)

That is, U acting by conjugation takes a tensor product of Pauli matrices to a tensor product of Pauli matrices. Actually, an element of the Clifford group is defined as this action by conjugation, so that the overall phase of U is not relevant.

In this exercise, you will show that the Clifford group can be generated by three quantum gates: the single-qubit gates H and P, and the two-qubit gate CNOT= $\Lambda(X)$. Here H denotes the Hadamard gate

$$\boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \tag{3}$$

(a rotation by π about the axis $\hat{x} + \hat{z}$), and **P** denotes the phase gate

$$\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \tag{4}$$

(a rotation by $\pi/2$ about the \hat{z} axis). It follows that quantum circuits constructed from these gates can be efficiently simulated by a classical computer, because the action of C_n on \mathcal{P}_n can be succinctly described and easily updated after each gate.

- a) Compute how H, P, and $\Lambda(X)$ act on Pauli operators by conjugation, and verify that H and P are in C_1 and that $\Lambda(X)$ is in C_2 .
- b) Show that H and P generate C_1 . [Hint: Note that the elements of the one-qubit Clifford group are the permutations of X, Y, Z, with minus signs appropriately chosen so that the product XYZ = iI remains invariant.]
- c) Let $\Lambda(\sigma)$ denote the two-qubit gate that applies σ to the target qubit if the control qubit is $|1\rangle$, and acts trivially if the control qubit is $|0\rangle$. Let σ_j denote σ acting on qubit j. Show that $\Lambda(\mathbf{Z})$ and $\Lambda(\mathbf{Y})$ can be constructed from $\Lambda(\mathbf{X})$, \mathbf{H} , and \mathbf{P} . Show that

$$\Lambda(\boldsymbol{\sigma})\boldsymbol{Z}_1\Lambda(\boldsymbol{\sigma}) = \boldsymbol{Z}_1, \quad \Lambda(\boldsymbol{\sigma})\boldsymbol{X}_1\Lambda(\boldsymbol{\sigma}) = \boldsymbol{X}_1\boldsymbol{\sigma}_2, \quad (5)$$

where qubit 1 is the control of the $\Lambda(\sigma)$ and qubit 2 is its target. Here σ is one of X, Y, Z, so that in particular $\sigma^2 = I$.

We will prove that H, P, and $\Lambda(X)$ generate C_n by induction. We have already shown (b). Now assume, as an inductive hypothesis, that H, P, and $\Lambda(X)$ generate C_n . We need to show that they generate C_{n+1} .

d) Suppose that U is an element of C_{n+1} . Show that there is a W generated by H, P, and $\Lambda(X)$ such that the action of WU by conjugation is

$$egin{aligned} m{W}m{U}: & m{X}_1 &
ightarrow m{X}_1 m{M} \ & m{Z}_1 &
ightarrow m{Z}_1 m{N} \ . \end{aligned}$$

where each of M, N is a tensor product of Pauli matrices acting on qubits 2 through n + 1.

e) Now consider

$$V \equiv \Lambda(M)H_1\Lambda(N)H_1WU , \qquad (7)$$

where $\Lambda(\mathbf{M})$ denotes the transformation controlled by the first qubit that applies \mathbf{M} to the other n qubits, and similarly for $\Lambda(\mathbf{N})$. Note that $\Lambda(\mathbf{M})$ and $\Lambda(\mathbf{N})$ can be constructed from \mathbf{H} , \mathbf{P} , and $\Lambda(\mathbf{X})$. It follows from (c) that the action of $\Lambda(\mathbf{M})$ by conjugation is

$$\Lambda(\mathbf{M}): \quad \mathbf{X}_1 \rightarrow \mathbf{X}_1 \mathbf{M}$$

$$\mathbf{Z}_1 \rightarrow \mathbf{Z}_1. \tag{8}$$

Show that the action of V by conjugation is

$$V: X_1 \rightarrow X_1$$

$$Z_1 \rightarrow Z_1.$$

$$(9)$$

f) Show that V is in C_n , and therefore can be constructed from H, P, and $\Lambda(X)$. Show that U can also be constructed from H, P, and $\Lambda(X)$. This completes the inductive step, and the proof.

1.2 Correcting a shift

Operators acting on a d-level quantum system (or qudit) can be expanded in terms of the d^2 "Pauli operators"

$$X^a Z^b$$
, $a, b = 0, 1, 2, \dots, d-1$. (10)

Here X and Z are generalizations of the Pauli matrices σ_x and σ_z , which act in a particular basis $\{|j\rangle, j=0,1,2,\ldots,d-1\}$ according to

$$X: |j\rangle \to |j+1 \pmod{d}\rangle,$$

 $Z: |j\rangle \to \omega^j |j\rangle,$ (11)

where $\omega = \exp(2\pi i/d)$. Note that it follows that

$$ZX = \omega XZ \ . \tag{12}$$

An error acting on a qudit can be expanded in this basis.

Suppose that errors with |a|, |b| small compared to d are common, but errors with large |a| and |b| are rare. We wish to design a quantum error-correcting code that corrects these small "shifts" in the amplitude or phase of the qudit.

For $d = nr_1r_2$ (where n, r_1 and r_2 are positive integers), consider the stabilizer generators

$$M_X = X^{nr_1}, \quad M_Z = Z^{nr_2} .$$
 (13)

- a) Verify that M_X and M_Z commute.
- b) Find the commutation relations of M_X with X^aZ^b and of M_Z with X^aZ^b .

- c) Find two generators of the normalizer group of the code (the group of Pauli operators that commute with the stabilizer). What commutation relations are satisfied by these normalizer generators? What is the dimension of the code subspace?
- d) How large an amplitude shift |a| and phase shift |b| can be corrected by this code?

1.3 Polynomial CSS codes

Consider a pit that takes the p possible values $\{0, 1, 2, ..., p-1\}$, where p is prime. The set $\{0, 1, 2, ..., p-1\}$ can be regarded as a finite field \mathbb{F}_p with addition and multiplication defined modulo p; \mathbb{F}_p is a field because each nonzero element has a multiplicative inverse.

In this exercise, you will study the properties of a family of quantum codes for *qupits* (p-level quantum systems). These quantum codes are related to linear classical codes that are vector spaces over the field \mathbb{F}_p . We will refer to the quantum codes as *polynomial CSS codes*.

Let $x_0, x_1, \dots x_{n-1}$ (where $n \leq p$) be specified distinct elements of \mathbb{F}_p , and consider a classical code C_1 that contains all strings of n elements of \mathbb{F}_p of the form

$$(f(x_{n-1}), f(x_{n-2}), \dots, f(x_2), f(x_1), f(x_0)),$$
 (14)

where f(x) is a polynomial of degree at most m with coefficients in \mathbb{F}_p . (The code depends on how the elements $x_0, x_1, \ldots x_{n-1}$ of \mathbb{F}_p are chosen. Different codewords within the code are obtained by varying the polynomial f.)

- a) Show that C_1 is a vector space over \mathbb{F}_p .
- b) The weight of a vector in \mathbb{F}_p^n is the number of nonzero components of the vector, and the distance of a linear code is the minimum weight of a nonzero vector in the code. Show that the distance d_1 of C_1 satisfies

$$d_1 \ge n - m \ . \tag{15}$$

[**Hint:** A nonzero polynomial f(x) of degree m has at most m zeros over the field \mathbb{F}_p .]

Now let C_2 be the subcode of C_1 such that f(x) has degree at most m-1.

- c) Show that C_2 is a vector space over \mathbb{F}_p , and a subspace of C_1 .
- d) Suppose that $\{z_1, z_2, \ldots, z_m\}$ are distinct elements of \mathbb{F}_p , and that $\{y_1, y_2, \ldots, y_m\}$ are arbitrary elements of \mathbb{F}_p (not necessarily distinct). Show that there is a polynomial f(x) of degree less than m such that

$$f(z_1) = y_1,$$

 $f(z_2) = y_2,$
 \vdots
 $f(z_m) = y_m.$ (16)

[Hint: It is easy to construct such a polynomial f(x) explicitly.]

e) The code C_2^{\perp} dual to C_2 contains all vectors in \mathbb{F}_p^n that are orthogonal to all vectors in C_2 . Show that the distance d_2 of C_2^{\perp} satisfies

$$d_2 \ge m + 1 \ . \tag{17}$$

[**Hint:** Choose any m components of the n-component C_2 codewords, and consider the corresponding projection of C_2 into \mathbb{F}_p^m . Using the result of (d), show that the image of C_2 under this projection is all of \mathbb{F}_p^m . Conclude that any vector orthogonal to all vectors in C_2 must have weight at least m+1.]

- f) Now consider a quantum error-correcting code of the CSS type, based on the codes C_1 and $C_2 \subset C_1$. We can choose a basis for the code space such that each element of the basis is a uniform superposition of all C_1 codewords that belong to the same C_2 coset. What is the number of encoded qupits? (How many distinct C_2 cosets are contained in C_1 ?)
- g) A CSS code can correct t errors if $d_1 \geq 2t + 1$ and $d_2 \geq 2t + 1$. Explain how to construct polynomial CSS codes that encode one qupit, correct t errors, and have block size 4t + 1. For what values of p can such codes be constructed?

1.4 Good CSS codes

In class we derived the quantum Gilbert-Varshamov bound:

$$|\mathcal{E}^{(2)}| - 1 < \frac{2^{2n} - 1}{2^{n+k} - 2^{n-k}} . \tag{18}$$

This is a sufficient condition for the existence of a (possibly degenerate) binary stabilizer code that can correct all Pauli operators in a set \mathcal{E} ; here $|\mathcal{E}^{(2)}|$ denotes the number of distinct Pauli operators of the form $E_a^{\dagger}E_b$, where $E_a, E_b \in \mathcal{E}$. One consequence of this bound is that there exist "good" [[n, k, d = 2t + 1]] stabilizer codes that achieve an asymptotic rate $R = k/n = 1 - H_2(2t/n) - (2t/n) \log_2 3$.

The purpose of this exercise is to show that good Calderbank-Shor-Steane (CSS) codes exist.

- a) Derive a quantum Gilbert-Varshamov bound for CSS codes. Denote by \mathcal{E}^X the set of X-type errors that the code can correct (those that can be expressed as a tensor product of X's and I's) and denote by \mathcal{E}^Z the set of Z-type errors that the code can correct (those that can be expressed as a tensor product of Z's and I's). Denote by $\mathcal{E}^{X(2)}$ the set of $\{E_a^{\dagger}E_b\}$ where $E_a, E_b \in \mathcal{E}^X$, and similarly for $\mathcal{E}^{Z(2)}$. The quantum Gilbert-Varshamov bound for CSS codes is a sufficient condition for the existence of a CSS code with n_X stabilizer generators of the X type and n_Z stabilizer generators of the Z type that can correct all errors in \mathcal{E}^X and \mathcal{E}^Z , expressed as an inequality involving n_X , n_Z , $|\mathcal{E}^{X(2)}|$ and $|\mathcal{E}^{Z(2)}|$.
- b) Use the quantum Gilbert-Varshamov bound for CSS codes to show the existence of CSS codes that achieve the asymptotic rate $R = k/n = 1 H_2(2t_X/n) H_2(2t_Z/n)$, where the code can correct t_X X errors and t_Z Z errors.