1.1 Good CSS codes

a) We wish to derive a quantum Gilbert-Varshamov bound for CSS codes. We'll use the same technique as was used in class. Let \mathcal{S} be the set of all CSS codes on n qubits with n_X stabilizer generators of the X type and n_Z stabilizer generators of the Z type. We require $n_X + n_Z \leq n$ so that \mathcal{S} is nonempty.

We use symplectic notation: $(\alpha, \beta) \equiv \bigotimes_{i=1}^n Z^{\alpha_i} \bigotimes_{i=1}^n X^{\beta_i}$ for vectors $\alpha, \beta \in \mathbb{F}_2^n$. Denote the stabilizers of a code S as $(\alpha_i, 0)$ for $i = 1, 2, ..., n_Z$ and $(0, \beta_i)$ for $i = 1, 2, ..., n_X$, where we omit the dependence of the stabilizers on S. Define $S_Z = \text{span}(\{\alpha_i\})$ and $S_X = \text{span}(\{\beta_i\})$: these are subspaces of \mathbb{F}_2^n .

Consider an X-type error $(0,\beta)$. Clearly it commutes with all X-type stabilizer generators; it commutes with a Z-type stabilizer generator $(\alpha_i,0)$ if $\alpha_i \cdot \beta = 0$, so the set of undetectable X-type errors is $\{(0,\beta): \beta \in S_Z^{\perp}\}$ where S_Z^{\perp} is the orthogonal subspace of S_Z in \mathbb{F}_2^n . But if an error is in $S_X \subseteq S_Z^{\perp}$, it acts trivially on the code space. So the number of nontrivial undetectable X-type errors for S is $|S_Z^{\perp}| - |S_X| = 2^{n-n_Z} - 2^{n_X}$.

We need to establish:

Lemma 1. Each nonzero X-type error is nontrivial undetectable for the same number of codes $S \in \mathcal{S}$.

Note that we use the word *nonzero* to mean that the error is not equal to the identity operator since we are already using *nontrivial* in a different context.

Proof. The proof is similar to that used to establish the Gilbert-Varshamov bound for classical codes. If $(0, \beta)$ and $(0, \tilde{\beta})$ are two nonzero X-type errors then there is an operator M in $O_n(2)$ (the orthogonal group over \mathbb{F}_2^n) such that (i) $\tilde{\beta} = M\beta$ and (ii) M permutes the elements of S (via the action $\alpha_i \to M\alpha_i$ and $\beta_i \to M\beta_i$).

There are $2^n - 1$ nonzero X-type errors, so the number of codes N_X for which an X-type error is nontrivial undetectable is

$$N_X = \frac{2^{n-n_Z} - 2^{n_X}}{2^n - 1} |\mathcal{S}|. \tag{1}$$

We can do the same analysis for Z-type errors.

Let \mathcal{E}^X be the set of X-type errors we want our code to correct and let $\mathcal{E}^{X(2)}$ denote the set $\{E_a^{\dagger}E_b: E_a, E_b \in \mathcal{E}^X\}$. Then the code can correct errors in \mathcal{E}^X iff it can detect errors in $\mathcal{E}^{X(2)}$. Define \mathcal{E}^Z and $\mathcal{E}^{Z(2)}$ similarly. We now eliminate those codes that don't detect nonzero errors in $\mathcal{E}^{X(2)}$ and $\mathcal{E}^{Z(2)}$. We eliminate at most

$$(|\mathcal{E}^{X(2)}| - 1) N_X + (|\mathcal{E}^{Z(2)}| - 1) N_Z$$

$$= \left[(2^{n - n_Z} - 2^{n_X}) (|\mathcal{E}^{X(2)}| - 1) + (2^{n - n_X} - 2^{n_Z}) (|\mathcal{E}^{Z(2)}| - 1) \right] \frac{|\mathcal{S}|}{2^n - 1}$$
(2)

codes. Hence if

$$(2^{n-n_Z} - 2^{n_X}) (|\mathcal{E}^{X(2)}| - 1) + (2^{n-n_X} - 2^{n_Z}) (|\mathcal{E}^{Z(2)}| - 1) < 2^n - 1$$
(3)

there is a code $S \in \mathcal{S}$ that can correct all errors in \mathcal{E}^X and \mathcal{E}^Z . This is the quantum Gilbert-Varshamov bound for CSS codes.

b) If our code is to correct t_X X errors then

$$|\mathcal{E}^{X(2)}| = \sum_{j=0}^{2t_X} \binom{n}{j} \le 2^{nH_2(2t_X/n)},$$
 (4)

and similarly for $|\mathcal{E}^{Z(2)}|$. Hence we require asymptotically that

$$(2^{n-n_Z} - 2^{n_X}) (|\mathcal{E}^{X(2)}| - 1) + (2^{n-n_X} - 2^{n_Z}) (|\mathcal{E}^{Z(2)}| - 1)$$

$$\leq 2^{n-n_Z} 2^{nH_2(2t_X/n)} + 2^{n-n_X} 2^{nH_2(2t_Z/n)} \lesssim 2^n$$
(5)

which simplifies to

$$2^{nH_2(2t_X/n)-n_Z} + 2^{nH_2(2t_Z/n)-n_X} \lesssim 1.$$
(6)

This equation is satisfied if we take $n_Z \approx nH_2(2t_X/n)$ and $n_X \approx nH_2(2t_Z/n)$. The number of encoded qubits is $k = n - n_X - n_Z$. Hence there exist CSS codes that achieve the asymptotic rate $R = k/n = 1 - H_2(2t_X/n) - H_2(2t_Z/n)$.

1.2 Polynomial CSS codes

- a) The set of polynomials $\{f(x)\}$ of degree at most m with coefficients in \mathbb{F}_p is a vector space over \mathbb{F}_p . It follows that C_1 is also a vector space over \mathbb{F}_p .
- b) Let \vec{v} be a nonzero vector of mimimum weight in C_1 . A nonzero polynomial of degree d has at most m zeros over a field, so at most m components of \vec{v} are zero, as the x_i are distinct. This implies that at least n-m components of \vec{v} are nonzero, so \vec{v} has weight at least n-m. Hence C_1 has distance $d_1 \geq n-m$.
- c) The code C_2 is a vector space over \mathbb{F}_p by the same argument used in part a). Since it is a subset of C_1 , it is a subspace of C_1 .
- d) Given m distinct elements $\{z_1, z_2, \ldots, z_m\}$ of \mathbb{F}_p , and m arbitrary elements $\{y_1, y_2, \ldots, y_m\}$ of \mathbb{F}_p , we have to prove there is a polynomial f(z) of degree less than m such that $f(z_i) = y_i$ for $i = 1, 2, \ldots, m$. As suggested in the hint, it is easy to construct such a polynomial explicitly: for example we can take

$$f(z) = \sum_{i=1}^{m} y_i \prod_{j \neq i} \frac{z - z_j}{z_i - z_j},$$
(7)

which is well defined (since the z_i are distinct) and has degree m-1 (unless all the y_i are zero, in which case it has degree zero). We then have

$$f(z_k) = y_k \prod_{j \neq k} \frac{z_k - z_j}{z_k - z_j} + \sum_{i \neq k} y_i \frac{z_k - z_k}{z_i - z_k} \prod_{j \neq i, k} \frac{z_k - z_j}{z_i - z_j}$$
(8)

$$= y_k + 0. (9)$$

- e) We follow the reasoning given in the hint. Choose any m components of the n-component C_2 codewords and consider the natural projection from C_2 into \mathbb{F}_p^m . Let $\vec{y} = (y_1, y_2, \dots, y_m)$ be an arbitrary vector in \mathbb{F}_p^m . Then by part (d), there is a polynomial f(x) of degree at most m-1 such that \vec{y} is the image of $(f(x_{n-1}), f(x_{n-2}), \dots, f(x_0))$ under the projection (this follows because the x_i are distinct). Because \vec{y} is arbitrary, the image of C_2 under this projection is all of \mathbb{F}_p^m .
 - Let \vec{v} be a nonzero vector of weight at most m and choose k such that the kth component of \vec{v} , denoted v_k , is nonzero. Then, by the argument in the previous paragraph, there is a vector \vec{w} in C_2 such that (i) $w_k = 1$ and (ii) for all $i \neq k$, $v_i \neq 0$ implies $\vec{w} = 0$. Informally, \vec{w} is zero where \vec{v} is nonzero, except for coordinate k. Then $\vec{v} \cdot \vec{w} = v_k \neq 0$, which implies $\vec{v} \notin C_2^{\perp}$. It follows that the distance d_2 of C_2^{\perp} satisfies $d_2 \geq m+1$.
- f) By Lagrange's theorem, the number of distinct C_2 cosets in C_1 is $|C_1|/|C_2|$. It is not hard to see that $|C_1| = p^{m+1}$ (it is at most p^{m+1} because there are only p^{m+1} polynomials of degree m over \mathbb{F}_p ; it is at least p^{m+1} by part (d)). Similarly we have $|C_2| = p^m$, so there are p distinct C_2 cosets in C_1 . Hence there is one encoded qupit.
 - We can also construct the cosets explicitly: two polynomials of degree at most m are in the same coset iff their difference is a polynomial of degree at most m-1 which is true iff the coefficients of x^m are the same. Hence the cosets (and therefore the encoded qupit) are labeled by the coefficient of x^m .
- g) Collecting together our previous results we have $d_1 \geq n m$ and $d_2 \geq m + 1$. A CSS code can correct t errors if $d_1 \geq 2t + 1$ and $d_2 \geq 2t + 1$, so we need $n m \geq 2t + 1$ and $m + 1 \geq 2t + 1$. These inequalities are satisfied if we take m = 2t and n = 4t + 1. The construction requires we choose n distinct elements of \mathbb{F}_p , so we require $p \geq 4t + 1$ for such a code to be constructed.

1.3 Correcting a shift

a) We have to show that $M_X = X^{nr_1}$ and $M_Z = Z^{nr_2}$ commute, where $d = nr_1r_2$. Let i and j be positive integers. It follows from $ZX = \omega XZ$ that $Z^iX = \omega^i XZ^i$ by induction on i. From this it follows that $Z^iX^j = \omega^{ij}X^jZ^j$ by induction on j. Hence

$$M_Z M_X = Z^{nr_2} X^{nr_1} = \omega^{n^2 r_1 r_2} X^{nr_1} Z^{nr_2} = \omega^{dn} M_X M_Z = M_X M_Z, \tag{10}$$

since $\omega^d = 1$.

b) We use the relations proved in the previous part to find

$$M_X X^a Z^b = X^{nr_1} X^a Z^b = \omega^{-nr_1 b} X^a Z^b X^{nr_1} = \omega^{-nr_1 b} X^a Z^b M_X. \tag{11}$$

So
$$[M_X, X^a Z^b] = (\omega^{-nr_1b} - 1) X^a Z^b M_X$$
. Similarly we obtain $[M_Z, X^a Z^b] = (\omega^{nr_2a} - 1) X^a Z^b M_Z$.

c) The Pauli operator X^aZ^b commutes with M_X and M_Z iff $\omega^{nr_1b}=1$ and $\omega^{nr_2a}=1$. Since $d=nr_1r_2,\ X^aZ^b$ is in the normalizer group iff a is an integer multiple of r_1 and b is an integer multiple of r_2 . Hence the normalizer group is generated by $\tilde{X}=X^{r_1}$ and $\tilde{Z}=Z^{r_2}$. We can now calculate

$$\tilde{Z}\tilde{X} = Z^{r_2}X^{r_1} = \omega^{r_1r_2}X^{r_1}Z^{r_2} = \tilde{\omega}\tilde{X}\tilde{Z},$$
 (12)

where $\tilde{\omega} = \omega^{r_1 r_2} = \exp(2\pi i r_1 r_2/d) = \exp(2\pi i/n)$. We observe that the encoded operators act on a *n*-dimensional quantum system (or $qunit^1$).

d) We can detect an amplitude shift of magnitude $|a| < r_1$ and a phase shift of magnitude $|b| < r_2$. Therefore the code can correct an amplitude shift of magnitude $|a| \le (r_1 - 1)/2$ and a phase shift of amplitude $|b| \le (r_2 - 1)/2$.

 $^{^{1}}$ There is no end to the number of different quxits we can have. But if you have too many quzits, you might have a qufit.