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retriever has unlimited control over the emitted Hawking radiation. If the evaporation of

the black hole has already proceeded past the “half-way” point, where half of the initial

entropy has been radiated away, then additional quantum information deposited in the

black hole is revealed in the Hawking radiation very rapidly. Information deposited prior

to the half-way point remains concealed until the half-way point, and then emerges quickly.

These conclusions hold because typical local quantum circuits are efficient encoders for

quantum error-correcting codes that nearly achieve the capacity of the quantum erasure

channel. Our estimate of a black hole’s information retention time, based on speculative

dynamical assumptions, is just barely compatible with the black hole complementarity

hypothesis.
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1. Introduction

Is the information consumed by a black hole destroyed and lost forever [1], or might it

be recovered from the Hawking radiation that is emitted as the black hole evaporates?

Evidence from string theory suggests that the information, rather than being destroyed,

can be encoded in the black hole’s internal degrees of freedom and eventually transferred

to the outgoing radiation [2, 3]. However, the issue remains controversial, and in any event

the mechanism by which information escapes from a black hole remains elusive.

Quantum information theory addresses quantitative questions about the acquisition,

transmission, and processing of information in quantum systems [4]. Though quantum

information theory cannot by itself resolve the black hole information puzzle, it can provide

intuition and tools that help to sharpen our understanding of the question.

In this paper, we assume that black holes, like other thermal systems, process quantum

information rather than destroy it, and we apply insights from quantum information theory

to study the information content of the Hawking radiation. Our conclusion is that, under

plausible dynamical assumptions, the black hole releases information remarkably quickly,

much faster than might have been naively expected.

Our analysis has two main components. At first, we assume that a black hole thermal-

izes quantum information arbitrarily quickly, so that we may model the internal dynamics

of a black hole by an instantaneous random unitary transformation. Under this assumption,

we show in section 3 that if a black hole’s internal degrees of freedom are nearly maximally

entangled with the previously emitted Hawking radiation (as would be expected for a black

hole that has already radiated away more than half of its initial entropy), then k qubits

of quantum information dumped into the black hole will be revealed after just a few more
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than k qubits are emitted in the Hawking radiation. This observation rests on known

achievable rates for entanglement-assisted quantum communication through a quantum

erasure channel [5].

Then we reexamine the issue of a black hole’s thermalization time, and we argue in

section 4 and section 5 that a black hole’s internal quantum state becomes thoroughly mixed

in a (Schwarzschild) time of order rS log(rS/lP ), where rS is the black hole’s Schwarzschild

radius and lP is the Planck length (and where the speed of light is c = 1). This argument,

based on speculative dynamical assumptions, relies on a recent construction of efficient

quantum circuits that realize approximate unitary 2-designs [6, 7]. Combining with the

preceding result, we infer that, for a black hole whose evaporation is past the half-way

point, k qubits absorbed by the black hole will be reemitted in Schwarzschild time O(krS)

or O(rS log(rS/lP )), whichever is larger.

If we accept that black holes evolve unitarily and encode quantum information in their

Hawking radiation, then we are faced with the challenge of reconciling this phenomenon

with the perspective of an infalling observer who tumbles through the event horizon. We

do not attempt to resolve this mystery here. Rather, we focus on the behavior of the black

hole from the perspective of observers who stay outside. To these observers, a black hole is

a seething cauldron of microscopic degrees of freedom localized close to the horizon, about

one qubit per Planck unit of area, undergoing local unitary dynamics with a characteristic

time scale of order the Planck time [8, 9]. We assume that the observers refrain from

attempting to probe these microscopic degrees of freedom directly, which would be far

too dangerous. Rather they are content to infer how the black hole processes information

indirectly, by investigating the relationship between the infalling matter and the outgoing

radiation.

We will, however, address in section 6 whether our claim that information escapes

rapidly from black holes can be reconciled with the hypothesis of “black hole complemen-

tarity,” according to which no violations of the accepted principles of quantum physics can

be detected by any observer, whether outside or inside the black hole. We conclude that

rapid escape and black hole complementarity are compatible, but only just barely so.

2. A classical randomizer

Black holes may not destroy information, but surely they hide it pretty well. How well?

The black hole information puzzle really concerns the processing of quantum informa-

tion, but let us to begin our discussion by considering the fate of classical information that

enters a black hole. Suppose that Alice, a citizen of a highly advanced civilization in the

distant future who has recorded her most private thoughts in a very confidential diary, has

second thoughts and resolves to destroy her diary. How should she proceed? Bob, the top

forensic scientist of Alice’s era, has remarkable capabilities — he can recover the contents

of an erased hard disk, restore the shredded pages of a document, even reconstitute burned

pages from their ashes and smoke. Presumably, Alice’s safest option is to toss her diary

into a nearby large black hole. Eventually, the black hole will evaporate completely, encod-

ing Alice’s diary in the outgoing Hawking radiation where it might be decrypted by Bob.
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But evaporation of a large black hole is an extremely slow process — Alice’s secrets will

be secure not for all eternity, but at least for many generations to come.

Or will they? Since we are for now discussing only classical information, let us adopt

a highly unrealistic classical model of a black hole. (It will be instructive to contrast this

classical model with a quantum model of a black hole that we will discuss in section 3.) In

this classical model, Alice’s diary is a bit string of length k and the internal state of the

large black hole is regarded as a bit string of length n− k ≫ k. We assume that Bob, who

has been observing the black hole since its formation and has a thorough understanding of

black hole dynamics, knows the black hole’s internal state, but he does not (yet) know the

content of Alice’s diary.

Now Alice tosses in her diary; the black hole’s bit string grows to length n, where Bob

knows n − k of the bits, and the black hole’s internal dynamics processes this length-n

string. We model this dynamics as a permutation (known by Bob) of all of the 2n strings

of length n (not a permutation of the n bits). After the processing, the black hole releases

the bits one at a time in the Hawking radiation, as Bob watches expectantly. How soon

will Bob be able to read the diary? We claim that, for almost any permutation, Bob will

only need to receive a few more than k bits before he will be able to decipher the complete

diary, with low probability of error. Alice’s secrets are not protected for the full lifetime of

the black hole; rather they are revealed to Bob almost as quickly as possible!

The black hole dynamics is deterministic (one particular known permutation is applied

to the n-bit string), but for analyzing the information content of the radiation it is helpful

to adopt the information theorist’s favorite trick — to assume that the permutation has

been chosen uniformly at random from among the (2n)! possible ones. After processing

by the black hole, Alice’s k-bit message has been transformed to one of 2k possible n-bit

strings, and if Bob could read all n bits he would know which of the 2k strings he had and

so decode Alice’s message. But even if Bob has access to just a few more than the first k

bits of the string, he is likely to be able to rule out all messages except for the correct one,

so that he can still decode successfully.

For the case of a random encoding, the probability of a decoding failure is easily

estimated. If Bob reads the first s bits of the string, what is the probability that these bits

accidently match the first s of an encoded message other than the correct one? For each

message, the probability of an accidental match is 2−s, and since there are all together 2k

encoded messages, the probability Pfail that any of the wrong messages match the s bits

satisfies

Pfail ≤ 2k2−s = 2−c , where s = k + c . (2.1)

Therefore, if Bob wants the probability of failure to be no larger than 2−c for some constant

c, he decodes after receiving k+ c bits of Hawking radiation. Here we speak of a probability

of failure because we are averaging over all the possible encodings of k bits in a block of n

bits. Our conclusion is that most encodings work.

In information theory, the capacity C of a noisy communication channel is the max-

imum achievable asymptotic rate at which coded information can be sent through the

channel with a negligible probability of a decoding error by the receiver. What we have
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just described is related to two standard results in the theory of noisy classical channels [10]:

(1) The (classical) erasure channel with erasure probability p has capacity C = 1− p, and

(2) random encodings achieve the capacity.

In our setting, the black hole dynamics transforms Alice’s k-bit message into one of

the 2k codewords of a random code with block length n. We say that the rate of the code

is R = k/n, the number of message bits per bit in the code block. When k + c of the bits

in the block have been revealed to Bob, the remaining n − k − c bits have in effect been

erased as far as Bob is concerned. Yet, despite these erasures, Bob is able to decode Alice’s

message with good success probability. Letting n get large with R and c fixed, we conclude

that the message can be decoded even as the fraction of erased bits approaches p = 1−R;

that is, the rate R = 1 − p is achievable in the limit of a large code block.

To Alice’s dismay, we conclude that (in this model) a black hole is hardly black at all;

it might more accurately be regarded as a kind of information mirror. Alice throws her

diary into the black hole, and it bounces right back! Granted, it may be a strange sort of

mirror, since if the Hawking radiation leaks out slowly and k ≫ 1, then Alice’s message

is obscured for a while; furthermore, Bob needs to use his knowledge of the black hole’s

initial state and its dynamics to decipher the “reflection.” But once a few more than k bits

have been reemitted by the black hole, the diary comes back into sharp focus, and Alice’s

secrets are no longer concealed from Bob. What is especially ironic about this scenario is

that, by modeling the internal black hole dynamics as a random permutation, we hoped

to maximize the black hole’s power to hide the information it consumes. But at least as

a matter of principle we have achieved the opposite of what we intended — the random

permutation encodes the k bits in a form that is optimally protected against the damaging

effects of erasure!

Let’s point out some implicit assumptions underlying this model. We have assumed

that the internal dynamics of the black hole is very fast — the permutation is applied

almost instantaneously after Alice’s message is deposited, before any of the Hawking radi-

ation leaks out. We will return to the issue of estimating the actual thermalization time

scale in section 4 and section 5. We have assumed that the permutation is “typical.” This

assumption is nontrivial, because if the dynamics of the black hole is realized by a (re-

versible) classical computer performing local logic gates, then most permutations require

very long computations, and the computations that can be performed efficiently may be

far from typical. Similarly, we have not worried about the efficiency of Bob’s decoding

operation. We have imagined that Bob consults a huge codebook that lists the 2k valid

message strings, but if k is large then this codebook would be of unmanageable size. We

will discuss the efficiency of the recovery procedure further in section 5. Finally, the most

glaring drawback of our model is that it is classical. Let us now turn to its quantum

generalization.

3. A quantum randomizer

Again, we imagine that Alice regrets recording some information and wants to destroy it,

but this time the information is not a bit string — rather it is quantum information stored
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in a k-qubit quantum memory. Normally, when we say that a quantum memory stores

k qubits, we mean that the stored quantum state lives in a Hilbert space of dimension

2k, but we also mean something more: that the Hilbert space has a physically natural

decomposition as a tensor product of k two-level systems. For example, we might envision

the memory as a system of k spin-1
2 particles. However, this tensor product decomposition

will not be central to our discussion, so it will for the most part be adequate to regard

Alice’s message system M as a Hilbert space of dimension |M | = 2k without any special

structure (and where k need not be an integer).

Next, we need to reconsider some other features of the classical scenario. For example,

what does it mean to say that Alice’s quantum state can be recovered by Bob from the

Hawking radiation? We don’t necessarily mean that Bob can acquire a complete classical

description of the state; that would be too much to ask. Rather we mean that Bob can

do anything with the recovered state that he would have been able to do with the state

of Alice’s memory if he had been able to access it in the first place, before Alice tried to

destroy it.

It is useful to imagine that a third party (Charlie) holds a reference system N with

dimension |N | = |M | that is maximally entangled with Alice’s memory M . That is, the

initial joint state of the memory and the reference system may be chosen to be the pure

state

|Φ〉MN =
1

√

|M |

|M |
∑

a=1

|a〉M ⊗ |a〉N ; (3.1)

we say that the N provides a purification of the state of M . If Charlie holds N , but Alice

retains M , then the density operator for N (upon tracing out M) is maximally mixed.

Suppose that Alice tosses M into the black hole. If sometime later Bob is able to extract

from the Hawking radiation a subsystem of dimension |M | that is maximally entangled

with N , then we may say that Bob has recovered the quantum information that had been

stored in Alice’s quantum memory. This would imply in particular that if the initial state

of M had been a pure state |ψ〉 (not entangled with any reference system), then Bob would

be able to recover |ψ〉 in his chosen subsystem [11].

In the classical scenario, we imagined that Bob knew the initial internal state of the

black hole and the dynamical laws that govern its evolution. We would like to make

parallel assumptions regarding the quantum model, but what should it mean to say that

Bob “knows” a quantum state? When we say that Bob knows the bit string encoded in

the classical black hole, we really mean that Bob holds a record that is perfectly correlated

with the state of the black hole (e.g., a perfect copy of the string). Similarly, in the case

of the quantum black hole we may imagine that Bob holds a quantum memory that is

perfectly correlated with the black hole’s internal state, i.e., maximally entangled with it.

This is a strong assumption, but not a crazy one if we grant Bob complete control over the

Hawking radiation.

Indeed, consider how the entanglement of the black hole with the emitted radiation

evolves as the black hole evaporates. We may divide the world into two subsystems — the

black hole’s internal system B and radiated system E. The relative size of these subsystems
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Figure 1: Information retrieval from an evaporating black hole. The black hole, which has been

evaporating for a long time, has become maximally entangled with the previously emitted radiation

system E. At this stage, the black hole swallows Alice’s quantum memory M , which is maximally

entangled with Charlie’s reference system N . The internal dynamics of the black hole applies a

strongly mixing unitary transformation V B, and then the additional radiation system R is emitted,

where the dimension of R is somewhat larger than the dimension of M . Now a subsystem of RE,

controlled by Bob, is nearly maximally entangled with N — the content of Alice’s quantum memory

has escaped from the black hole and is in Bob’s possession.

varies with time; in particular, we may assume that, at any stage of the evaporation process,

log |B| is the black hole’s Bekenstein-Hawking entropy. Early on, soon after the black hole’s

formation, we have |B|/|E| ≫ 1, and one can plausibly argue [12 – 14] that E is very nearly

maximally entangled with a subsystem of B. However, as the evaporation proceeds, log |B|
eventually declines to half of its initial value, and soon after we have |B|/|E| ≪ 1; then we

may expect that B is very nearly maximally entangled with a subsystem of E.

Suppose that Alice, intent on destroying her k-qubit quantum memory, heads for the

nearest large black hole and tosses her qubits in. In her haste, she imprudently fails to

investigate the hole’s history. But this particular black hole actually formed long ago, and

Bob has been collecting its emitted Hawking radiation ever since. By now, the black hole’s

internal state is maximally entangled with a system Bob controls.

How soon will Bob be able to recover Alice’s memory from the Hawking radiation?

We assume that the internal dynamics of the black hole is a deterministic unitary trans-

formation that thoroughly mixes the infalling information into the black hole’s preexisting

(n − k)-qubit state; then the black hole’s qubits are released, one by one, in the Hawking

radiation. We claim that, for almost any unitary transformation, Bob needs to wait for

only a few more than k qubits to be emitted. Much as in our classical discussion, the

(maximally entangled) black hole is hardly black at all — it is a quantum information

mirror that returns to Bob the information Alice deposited almost as quickly as possible!

Right after Alice tosses in her qubits, the n-qubit black hole system B is maximally

– 6 –
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entangled with the system NE; here B includes Alice’s memory system M , which has

now been absorbed by the black hole, E is the previously emitted Hawking radiation

controlled by Bob, and N is Charlie’s reference system that had been entangled with M .

As Bob watches attentively, the black hole continues to emit Hawking radiation until, after

a while, s additional qubits (the subsystem R of B) have been emitted, with n − s qubits

(the subsystem B′) still retained by the black hole. We suppose for now that the emitted

s-qubit subsystem R of B is chosen uniformly at random (we will revisit this assumption in

section 5). That is, we imagine that B is divided into two parts, one with s qubits and the

other with n − s qubits; then a unitary transformation V B chosen uniformly with respect

to the Haar measure on U(2n) is applied to B. After that, the s-qubit system is identified

as R.

As the Hawking radiation leaks out, the correlations between the evaporating black hole

B′ and the reference system N gradually weaken. Once R is large enough, the surviving

correlation of N with B′ becomes negligible. At that point, since the overall state of

B′RNE is pure, the state of the reference system N is very nearly purified by the radiation

system RE that Bob controls — by this time, Alice’s quantum information has fallen into

Bob’s hands. See figure 1.

Let ΨBNE denote the pure density operator of BNE, and let ρBN = TrEΨBNE be the

corresponding marginal density operator on BN . The marginal density operator on NB′

is

σNB′

(V B) = TrR

[

ρNB(V B)
]

, where ρNB(V B) =
(

IN ⊗ V B
)

ρNB
(

IN ⊗ V B†
)

.(3.2)

Using standard estimates [15, 16], we find that the L1 distance of σNB′

from a product

state, averaged over V B (and hence over the choice of the subsystem R), can be bounded

as
∫

dV B
∥

∥

∥
σNB′

(V B) − σN (V B) ⊗ σB′

max

∥

∥

∥

2

1
≤ |NB|

|R|2 Tr
[

(

ρNB
)2

]

; (3.3)

here σN (V B) = TrB′

[

σNB′

(V B)
]

is the marginal density operator on N , and σB′

max =

IB′

/|B′| is the maximally mixed density operator on B′. The L1 norm, defined by ‖A‖1 =

Tr
√

A†A, is an appropriate measure because two states that are close in this norm cannot

be well distinguished by any measurement [17].

In the case we are currently considering, in which B is maximally entangled with NE,

ρNB is maximally mixed on a system of dimension |B|/|N |, and therefore

Tr
[

(

ρNB
)2

]

= |N |/|B| ; (3.4)

hence we find
∫

dV B
∥

∥

∥
σNB′

(V B) − σN (V B) ⊗ σB′

max

∥

∥

∥

2

1
≤ |N |2

|R|2 =
22k

22s
= 2−2c , where s = k + c .(3.5)

We see that, for a typical unitary transformation V B and for c sufficiently large, the state

of NB′ is nearly maximally mixed after k + c qubits have escaped from the black hole.

Alice’s k qubits have been “forgotten” by the black hole and have been acquired by Bob.
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Inconveniently, the information originally encoded in Alice’s memory M has become

encoded in a subsystem M ′ of RE that is very diffusely distributed among the emitted

radiation quanta. But in principle Bob could do a quantum computation that maps M ′ to

a compact system M̂ localized in his laboratory. For any fixed value of the unitary transfor-

mation V B , Bob’s decoding map can be chosen so that, after decoding, the density operator

ρM̂N of M̂N is close to the maximally entangled state |Φ〉M̂N (see, for example, [16]):

F (V B) ≡ 〈Φ|ρM̂N |Φ〉 ≥ 1 −
∥

∥

∥
σNB′

(V B) − σN (V B) ⊗ σB′

max

∥

∥

∥

1
. (3.6)

Eq. (3.5) implies that, after averaging over V B, the fidelity F (V B) deviates from one by no

more than 2−c; apart from a small error, Bob holds the purification of Charlie’s reference

system N . Thus eq. (3.5) can well be regarded as the quantum analog of the classical

estimate eq. (2.1); in both the classical and quantum models, the information that Alice

deposits in the black hole escapes almost as soon as it possibly can.

The conclusion that σNB′

becomes nearly maximally mixed after about k randomly

chosen qubits are discarded can be understood heuristically as follows: The initial density

operator ρNB is uniform on a space of dimension |B|/|N |, and so can be expressed as

a uniform ensemble of |B/|N | mutually orthogonal pure states. If |R| ≪ |NB′|, then a

typical pure state on NB is close to maximally mixed on R; therefore after tracing out R

each pure state in the ensemble representing ρNB(V B) yields a uniform density operator

on a subspace with dimension |R| of NB′. All together then, ignoring the overlap of these

subspaces, the density operator σNB′

is nearly uniform on a space of dimension |B|·|R|/|N |.
This matches the dimension of NB′, |N | · |B′| = |N | · |B|/|R|, for |R| = |N |. We expect

then, that for |R| ≈ |N |, the density operator σNB′

is nearly uniform on NB′.

As in the classical model, our conclusion can be usefully restated in terms of known

results in the theory of noisy channels: for the quantum erasure channel with erasure

probability p, the entanglement-assisted quantum capacity is QE = 1 − p [5]. In our

setting, the n − k − c qubits retained by the black hole are in effect erased as far as Bob

is concerned, yet Bob is able to extract k qubits of high fidelity quantum information.

The quantum communication rate R ≈ k/n is achieved using a randomly chosen unitary

encoder, and by exploiting a supply of pre-existing quantum entanglement that Bob shares

with the black hole.

Suppose on the other hand that Alice is more cautious, and deposits her sensitive

quantum information in a relatively young black hole, such that |E|/|B| ≪ 1. In that

event, the previously emitted Hawking radiation E will be nearly maximally entangled

with a subsystem of B. The radiation will continue to be essentially featureless, revealing

none of Alice’s information, until |B′| = |NRE|. Soon after, the black hole will be nearly

maximally entangled with its surroundings and eq. (3.5) will begin to apply; at that stage

Alice’s information suddenly spills out.

Here too the conclusion is related to a well known property of the quantum erasure

channel with erasure probability p: its quantum capacity (unassisted by entanglement) is

Q = 0 for p ≥ 1/2 and Q = 1 − 2p for p < 1/2 [18]. If the black hole initially holds n

qubits, then when (n+ k)/2 qubits have emerged, (n− k)/2 qubits remain inside the black
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hole. At this point, Bob’s system is k qubits larger than the black hole, so that Bob has

acquired k qubits of quantum information. Thus the communication rate is R = k/n and

the erasure probability is p = 1/2 − k/2n = 1/2 − R/2.

Some years ago, Don Page observed that the information swallowed by a black hole

remains hidden until half of the black hole’s qubits have been radiated away, and then

emerges at a constant rate as the evaporation proceeds [12]. Our conclusion is similar, but

our analysis goes further. Page considered the time dependence of the quantum entangle-

ment of the black hole with its surroundings, which starts out small, grows until half of

the entropy has been radiated away, and then declines. We have focused instead on when

a fixed amount of quantum information of particular interest can be recovered.

Our simple model of quantum black holes leads us to two main conclusions, under the

assumption that Bob has unlimited control over the Hawking radiation. If Alice dumps k

qubits into the black hole after half of the black hole’s initial entropy has been radiated

away, the information bounces right back — Bob recovers Alice’s quantum state after

waiting for just a few more than k qubits to be emitted. On the other hand, if Alice dumps

k qubits into the black hole before half of the black hole’s initial entropy has been radiated

away, then Bob needs to wait for a while. But once the black hole reaches the stage where

half of its qubits have been released (and the black hole has become maximally entangled

with its surroundings), Alice’s information pops out almost immediately!

Both statements seem strange upon first hearing, but especially the latter one, be-

cause who is to say which k qubits are “Alice’s”? In fact, no matter which k qubits of

quantum information swallowed by the black hole are of particular interest, these k qubits

are revealed almost right away when the half-way point of evaporation is finally reached.

There is nothing special about the subsystem M of B that is maximally entangled with N

in figure 1; for any other k-qubit subsystem the conclusion would have been the same —

that N becomes very nearly maximally entangled with a k-qubit subsystem of RE.

Therefore, when a black hole that initially held n qubits has evaporated past the half-

way point, so that (n + k + c)/2 qubits have been emitted, Bob gets to decide which k

qubits of quantum information he will retrieve from the Hawking radiation; when he makes

up his mind he performs the decoding operation on RE that maps those k qubits to the

quantum memory in his laboratory. But the catch is that, although Bob can recover almost

any k-qubit subsystem at this stage, he cannot recover more than k qubits.

Returning to the situation depicted in figure 1, imagine two different k-qubit subsys-

tems of the black hole, M1 purified by reference system N1 and M2 purified by reference

system N2. When Bob decodes only M1 his decoding map is permitted to act on N2 (which

in that case may be considered to be part of the radiation system RE), and when he de-

codes only M2 his decoding map may act on N1. But if he greedily wanted to decode both

M1 and M2, then both N1 and N2 would be out of his reach; thus trying to decode M2

in addition to M1 only interferes with his ability to decode M1. If Bob wants to retrieve

more than k qubits, he’ll just have to wait for the black hole to emit more quanta.

We note that if the internal dynamics of the black hole is actually time-reversal invari-

ant, then it may be more appropriate to model the dynamics by choosing the matrix V B

from either the circular orthogonal or the circular symplectic ensemble, with the choice
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depending on the total spin of the black hole [19]. Since time-reversal invariance is not a

fundamental symmetry in Nature, we think it is sensible to consider V B chosen uniformly

with respect to the Haar measure on U(2n) as described above. We have in any case verified

that our conclusions would not be much affected were we to choose V B from the circular

orthogonal ensemble or circular symplectic ensemble instead [20].

4. The thermalization time

As for our classical model, there are some nontrivial assumptions underlying our model of

a quantum black hole. In particular, when we conclude (in the case where the black hole

is maximally entangled with previously emitted radiation) that Alice’s information “comes

out fast,” we are taking it for granted that the information deposited by Alice is rapidly

thermalized by the black hole’s internal dynamics. By rapidly, we mean on a time scale

comparable to the time interval between the emission of successive radiation quanta. In

terms of the “Schwarzschild time” measured by static observers who are far from the black

hole, this interval is of order the Schwarzschild radius rS for a nonrotating uncharged black

hole (in units where the speed of light is c = 1).

There are several reasons why rS might seem at first to be a reasonable estimate of

the black hole’s thermalization time [21]. Classically, perturbed black holes have damped

quasinormal “ringing” modes, where the damping time is comparable to rS . Thus, if one

kicks a classical black hole, rS is the time scale for the black hole to forget about the kick.

Furthermore, under AdS/CFT duality, the dual of a large black hole is a strongly-coupled

conformal field theory with the same temperature T ≈ 1/rS (in units with ~ = c = 1). In

the field theory the only relevant time scale governing the approach to thermal equilibrium

is the time scale set by the temperature itself: 1/T ≈ rS. Thus, if one kicks the strongly-

coupled thermal bath, rS is the time scale for the bath to forget about the kick.

However, when one says that the strongly-coupled quantum field theory thermalizes

in a time of order 1/T , one ordinarily means that the system relaxes to a state that

is locally indistinguishable from a thermal state on this time scale. Our assertion that

information captured by a black hole is quickly reemitted in the Hawking radiation rests

on the validity of a more stringent global criterion for thermalization. How long does it

take for the quantum information deposited by Alice to become thoroughly mixed with the

black hole’s microscopic degrees of freedom?

Since this is really a question about strongly-coupled quantum gravity, we don’t have

the tools to answer it definitively, but we can try to make a plausible guess. For this

purpose, we envision the black hole’s qubits as uniformly distributed over the “stretched

horizon” [8, 9]. The stretched horizon is located about one Planck unit of proper distance

above the actual global horizon; here static observers have a proper acceleration of order

one in Planck units, and therefore are surrounded by a bath of Unruh radiation with

temperature of order one. (Quanta from this bath that are directed nearly radially outward

can escape to infinity as Hawking radiation, with a redshifted temperature of order 1/rS .)

According to the hypothesis of “black hole complementarity” [8, 9], observers who

remain outside the black hole may legitimately regard the stretched horizon as a repository
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that stores quantum information absorbed by the black hole, even though the strongly-

coupled “Planckian soup” is invisible to freely falling observers who pass through the

horizon. Because of the high temperature of the Planckian soup at the stretched horizon,

we need a thorough grasp of quantum gravity to understand its detailed dynamics.

The stretched horizon has some dissipative properties that can be analyzed classi-

cally [22]. For example, if electric charge is deposited in the black hole, currents flow

on the stretched horizon to redistribute the charge, which are damped by the stretched

horizon’s internal resistance. The local charge density decays like exp(−t/rS), where t is

the Schwarzschild time, and correspondingly the proper area of a droplet of charge on the

stretched horizon grows like exp(t/rS). The droplet envelops the stretched horizon, and

the charge distribution reaches a new steady state, after a Schwarzschild time of order

rS log rS . From the perspective of static observers hovering above the stretched horizon,

the spreading of charge is very fast, reaching a proper distance of order rS in a time of

order log rS as measured by their clocks; yet these observers are unable to manipulate the

flow of charge to achieve superluminal communication.

In its classical realization, the superluminal spreading of electric charge at the stretched

horizon is really a kinematic effect — it arises because the static observers in the Schwar-

zschild geometry separate with constant proper acceleration from freely falling charged

particles (beneath the stretched horizon) that are plunging toward the black hole’s global

event horizon. One feels hesitant about drawing any far-reaching dynamic conclusions

based on this kinematic spreading. But on the other hand a complete physical descrip-

tion of physics at the stretched horizon should accommodate some kind of rapidly mixing

dynamics, making it hard to distinguish between effects that arise from strong local inter-

actions and effects that are merely kinematic. Thus one is tempted to postulate that the

exponential spreading is exhibited not just by the black hole’s classical hair, but also by

its “quantum hair;” i.e., the quantum information that it encodes.

To the observers anchored at the stretched horizon, not just the local charge density but

also other local disturbances of the thermal bath decay like exp(−tstretch), where tstretch
is the time in Planck units as measured by static clocks at the stretched horizon. If

we (somewhat fancifully) envision “information” deposited in the black hole as a locally

conserved fluid, the exp(−tstretch) decay of the local information density suggests that the

droplet of information, just like the droplet of charge, expands exponentially and becomes

nearly uniformly distributed over the stretched horizon in a time tstretch = O(log rS),

corresponding to Schwarzschild time t = O(rS log rS). This picture leads us to suggest

that the black hole’s global (Schwarzschild) thermalization time is O(rS log rS).

In a sense this suggestion (also put forward in [9]) only deepens the information puz-

zle, as it poses the challenge of reconciling rapid spreading of quantum information on

the stretched horizon with the black hole’s causal structure. On the other hand, rapid

distribution of many-particle quantum entanglement need not imply superluminal signal-

ing. Furthermore, the black hole complementarity viewpoint already postulates that the

semiclassical causal structure of a black hole must be highly misleading in some respects;

the superluminal spreading is a relatively gentle extension of a viewpoint we are already

taking for granted.
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If an observer who is a distance of order rS from the horizon drops a freely falling

quantum memory into the black hole, it takes Schwarzschild time of order rS log rS for

the memory to reach the stretched horizon, and conversely it takes Schwarzschild time of

order rS log rS for quanta emitted from the stretch horizon to reach the observer’s detector.

Therefore, a thermalization time of order rS log rS is compatible with our central metaphor

— the black hole is a “mirror” in the sense that it returns Alice’s information in a time

comparable to the time it takes the information to fall into the black hole.

If one, more conservatively, insists that the spreading “droplet of information” remains

confined to the forward light cone, then the time required for global thermalization is

tstretch = Ω(rS), corresponding to Schwarzschild time t = Ω(r2
S). (Here the “big-Omega”

notation indicates a lower bound on the thermalization time for asymptotically large rS, up

to a multiplicative constant.) In that event, since once global thermalization is achieved k

qubits can escape in Schwarzschild time t = O(krS), one may expect that the Schwarzschild

time for a constant number of qubits to escape from the black hole is t = O(rp
S logq rS),

where 1 < p < 2. Here the exponents p and q are sensitive to the details of the model of

thermalization.

Of our two main conclusions in section 3, the conclusion that Alice’s qubits bounce

right back (if the black hole has already radiated away more than half of its initial entropy)

really does require rapid thermalization, i.e., thermalization in Schwarzschild time t =

O(rS log rS). But the other conclusion, that previously absorbed quantum information

is released quickly when the evaporation reaches the half-way point, still applies even if

thermalization takes much longer. For the second conclusion, we only need thermalization

to be fast compared to evaporation, which occurs in a Schwarzschild time of order r3
S rather

than rS log rS .

5. Efficiency

In section 3, our analysis of the quantum model of a black hole was, as a computer scientist

might put it derisively, “merely information theoretic.” We in effect assumed without

justification that the unitary transformation arising from the internal dynamics of an n-

qubit black hole is typical with respect to the Haar measure on U(2n) (and we also ignored

the complexity of Bob’s decoding algorithm). The vague picture offered in section 4,

depicting thermalization as the rapid spreading of a droplet, does not by itself provide

much support for describing the black hole’s dynamics as a random unitary transformation.

Can we defend this assumption?

In accord with the black hole complementarity hypothesis, let us suppose that the

internal dynamics of the black hole is governed by a strongly mixing local Hamiltonian

acting on n qubits that are uniformly distributed over the black hole’s stretched horizon [8,

9]. Here n (up to the factor 1
4 log2 e) is the area of the horizon in Planck units, and the

Schwarzschild radius is rS = O(
√

n) in Planck units. Though we don’t understand quantum

gravity well enough to analyze the internal dynamics in detail, we might nevertheless hope

to make a few cogent general observations.
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We find it helpful to envision this dynamics as a local quantum circuit, where in each

unit of time two-qubit unitary transformations (“quantum gates”) are applied in parallel to

about n/2 pairs of neighboring qubits. It seems natural to choose the unit of time to be the

Planck time, but according to whose clock? This is a subtle question, because, due to the

gravitational redshift, the clocks of static observers hovering above the stretched horizon

run much slower (by a factor of order rS in Planck units) than the clocks of observers

residing far from the horizon. As already noted in section 4, there are physical processes

on the stretched horizon (like the distribution of electric charge) that can act over a proper

distance of order rS in a Schwarzschild time of order rS. If we wish to accommodate

such processes in our circuit model, we may take the unit of time to be a Planck unit of

Schwarzschild time. This model of the local dynamics on the stretched horizon is very

naive, and in particular the model does not attempt to address the challenge of reconciling

rapid spreading of information with causality. In any case, no matter how we prefer to map

circuit time to physical time, it is useful to characterize the circuit complexity of global

thermalization.

In our model, after a Schwarzschild time t, the unitary transformation acting on the

black hole’s internal state is realized by a circuit that has a number of time steps (the

circuit’s “depth”) of order t (where t is expressed in Planck units) and a total number of

(local) quantum gates (the circuit’s “size”) of order nt. Unfortunately, if t is a polynomial

in n, then Haar-random unitary transformations cannot be generated with circuits of this

size. In fact, because the volume of U(2n) is exponentially large in 2n, reaching a typical

unitary transformation requires a circuit whose size is exponential in n.

However, much smaller circuits can be good encoders for quantum error-correcting

codes. In particular, the capacity of the quantum erasure channel is achieved by typical

stabilizer codes, which have encoding circuits of size O(n2) [23]. Furthermore, good ap-

proximate encoding circuits can be even smaller. If we replace the integral over all unitary

transformations by an average over the elements of the ǫ-approximate unitary 2-design K
constructed in [6], then eq. (3.5) is modified to become

1

|K|
∑

k∈K

∥

∥

∥
σNB′

(V B
k ) − σN (V B

k ) ⊗ σB′

max

∥

∥

∥

2

1
≤ 2−2(s−k) + ǫ + O(2−n) . (5.1)

Each element of K can be realized by a quantum circuit that has size O(n log(1/ǫ)) and

depth O(log n log(1/ǫ)) [6, 7]. It seems reasonable to expect that random quantum circuits

built from two-qubit gates would encode at least as efficiently as the approximate 2-designs

that have been explicitly constructed, and preliminary results from numerical experiments

are consistent with this expectation [24].

This estimate of the circuit size and depth does not take into account any geometric

locality constraints. If the n qubits are uniformly distributed on a two-dimensional sphere

with radius of order
√

n, then the additional cost of using local gates should be at worst a

blowup in size and depth by a factor of order
√

n, since the information stored in a qubit

can propagate a distance
√

n when
√

n local gates are applied in succession. Therefore,

there exist good approximate local encoding circuits for the quantum erasure channel that
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have size O(n3/2 log(1/ǫ)) and depth O(n1/2 log n log(1/ǫ)). Again, we expect that random

local circuits of this size and depth would do at least as well.

Therefore, if we model the internal dynamics of the stretched horizon by a random local

quantum circuit, we conclude that the global thermalization of the black hole is achieved

by a circuit whose depth is O(rS log rS log(1/ǫ)). By “global thermalization” we mean

such that eq. (5.1) holds, so that Bob can approximately decode Alice’s quantum memory

with a loss of fidelity of order ǫ. Modeling the internal dynamics of a physical system

by a small random quantum circuit is far more defensible than modeling it by a unitary

chosen uniformly with respect to Haar measure, because a small circuit can be realized

by physically plausible local dynamics. It therefore seems reasonable to suggest that the

dynamics of a black hole could efficiently generate good quantum error-correcting codes

for the quantum erasure channel. Indeed, if each computational step occurs in one Planck

unit of Schwarzschild time, then the thermalization time t = O(rS log rS) scales with rS as

in our crude estimate in section 4.

Decoding, however, can be a much harder computational problem than encoding. Black

hole evaporation maps Alice’s k qubits to a highly nonlocal subsystem M ′ of RE. Bob’s

decoding operation maps M ′ back to a compact system M̂ localized in his laboratory,

returning the qubits to a usable form. Even if we are willing to grant Bob the power to

collect all of the Hawking radiation emitted by the black hole, Bob might not be able

to recover Alice’s k-qubit message by means of an efficient quantum computation (the

resources needed to perform Bob’s computation might grow faster than any power of k).

Actually, if a stabilizer code is used to protect entanglement-assisted quantum com-

munication through the erasure channel, then Bob’s decoding computation is easy. Bob

can replace each erased qubit by the standard state |0〉, and then measure the code’s check

operators. With high probability, there is a unique Pauli operator acting on the erased

qubits that restores Bob’s state to the code space, and the recovery operation can be

efficiently computed using linear algebra. However, this recovery procedure exploits the

special structure of stabilizer codes, and would not work for typical non-stabilizer codes.

If thermalization is rapid, then the quantum codes realized by evaporating black holes

have small encoding circuits and therefore they too are rather special, but they are not

stabilizer codes and we do not know whether they are efficiently decodable. Conceivably,

the decoding is hard not only for n large with k/n fixed, but also for n large with k fixed.

If Bob’s decoding problem is intractable, then the physicists of our highly advanced civ-

ilization may be hard pressed to test the hypothesis that black holes reradiate quantum

information quickly.

For that matter, one might question the testability of the claim that black holes really

preserve quantum information. We emphasize, though, that even if Bob’s decoding problem

is hopelessly intractable, the physicists of our highly advanced civilization, using only

“polynomial resources,” should be able to test the hypothesis that black holes process

quantum information without destroying it. Once these physicists understand the laws of

black hole dynamics well enough, they should be able, using their quantum computers, to

simulate the formation and complete evaporation of a black hole. Through a “swap test”

[25], they could compare the output of their quantum simulation with the observed product
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of the black hole evaporation, and so verify that the dynamical black hole is behaving as

their theory predicts. The “feasibility” (in principle) of such a test boosts our confidence

that the assertion that black holes preserve information has a well formulated operational

meaning. Unfortunately, the swap test works for comparing pure states, not mixed states;

it can’t be used to compare the simulation with experiment in the case of a partially

evaporated black hole.

6. Are black holes quantum cloners?

Our analysis has been premised on the assumption that black hole evaporation respects

unitarity, and we have adopted the black hole complementarity viewpoint to describe the

process. We have been led to the conclusion that a black hole (whose evaporation is past the

half-way point) is really a sort of “information mirror” that quickly returns the quantum

information it receives. Now we should reassess whether our assumptions are consistent.

We note that the geometry of the evaporating black hole contains spacelike surfaces

that are crossed both by Alice’s infalling quantum memory (inside the event horizon), and

by the outgoing Hawking radiation that Bob decodes (outside the horizon). Therefore,

if Bob can decode successfully, then Alice’s quantum information has been “cloned” in

the outgoing radiation. But cloning of arbitrary quantum states is inconsistent with the

linearity of quantum mechanics [26, 27]. We seem to be stuck with a difficult choice:

either Alice’s information is not reemitted, or the black hole is a quantum cloning machine!

Either way, the foundations of quantum theory need revision. This appears to be a powerful

argument in favor of information loss [28].

The hypothesis of black hole complementarity was proposed as a way to avoid this

quandary [8, 9]: one chooses not to be bothered by quantum cloning if it occurs where

no one can ever find out. According to this philosophy, we may accept for now that Alice

(if she falls into the black hole) and Bob (if he stays outside) have sharply contrasting

descriptions of the same physical process. Eventually we hope to be able to reconcile

Alice’s and Bob’s contrasting viewpoints, but finding that more complete global description

must be postponed until we acquire a deeper understanding of quantum gravity. In the

meantime, we are entitled to insist that Alice’s and Bob’s descriptions are both compatible

with the standard principles of quantum mechanics.

Therefore we should ask: if Alice’s quantum state persists behind the horizon and

that state is also encoded in the outgoing Hawking radiation received by Bob, can Alice

or Bob verify the cloning? Once Alice falls through the horizon, she won’t be able to

compare notes with Bob if he stays outside the black hole. To have any hope of verifying

the cloning, Bob needs to remain outside until he has retrieved Alice’s qubits from the

Hawking radiation, and then dive into the black hole seeking confirmation that both he

and Alice have high-fidelity copies of Alice’s original quantum state. However, as long as

the black hole retains Alice’s qubits long enough before reemitting them, then we are unable

to say (based on our current understanding of quantum gravity) whether Bob will succeed

or not [29, 30]. As best we can tell, then, the black hole complementarity hypothesis seems
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Figure 2: Alice and Bob test whether an evaporating black hole clones quantum information.

Alice, carrying her quantum memory, drops into the black hole. Bob recovers the content of Alice’s

memory from the Hawking radiation, and then enters the black hole, too. Alice sends her qubits

to Bob, and Bob verifies that cloning has occurred.

to be self-consistent, provided the black hole retains quantum information for a sufficiently

long time.

To analyze this thought experiment, it is convenient to describe the Schwarzschild black

hole using the Kruskal null coordinates U, V as depicted in figure 2. These coordinates are

related to the Schwarzschild coordinates r, t by

U = −e(r∗−t)/2rS , V = e(r∗+t)/2rS , where r∗ = r + rS ln[(r − rS)/rS ] . (6.1)

In terms of these coordinates, the black hole’s event horizon is at U = 0, and the curvature

singularity occurs at UV = 1. Therefore, if Bob crosses the horizon at V = VBob, then

he reaches the singularity at U ≤ V −1
Bob. But if Alice falls freely, the proper time she

experiences between crossing the horizon at V = VAlice and reaching U = V −1
Bob is

τAlice = CrS (VAlice/VBob) , (6.2)

where C is a numerical constant that depends on Alice’s initial data (C = 1/e ≈ .368 if

Alice falls from rest starting at r = ∞). In terms of Schwarzschild time, Bob’s fall into the

black hole is delayed relative to Alice’s by ∆t, where VBob/VAlice = e∆t/2rS , and therefore

τAlice = CrS exp(−∆t/2rS) . (6.3)

Thus Alice’s proper time τAlice is of order the Planck time or shorter if Bob’s entry into

the black hole is delayed by ∆t = rS log rS or longer. The conclusion does not change
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substantially even if Alice rides a rocket, as long as her proper acceleration is small in

Planck units.

If Alice, after crossing the horizon, has less than a Planck time to communicate with

Bob about the status of her qubits, then she is required to send her message to Bob using

super-Planckian frequencies. And with our incomplete understanding of strongly-coupled

quantum gravity, we lack the tools to analyze the emission, transmission, and reception of

such signals. On the other hand, if Alice’s proper time were long compared to the Planck

time, then in principle she could send her qubits to Bob (or send a record of her measure-

ment outcomes), allowing Bob to verify the cloning, and the verification could be analyzed

using controlled semiclassical approximations. We conclude that, if verifiable cloning does

not occur, then the black hole must retain Alice’s information for a Schwarzschild time

interval ∆t = Ω(rS log rS) [29, 30]. (The “big-Omega” notation indicates that rS log rS is

a lower bound on the information retention time for asymptotically large rS , up to a mul-

tiplicative constant.) This finding is just barely compatible with the information retention

time estimated in section 4 and section 5.

We noted in section 4 that it already takes Schwarzschild time O(rS log rS) for the

Hawking radiation to climb from the stretched horizon to Bob’s detectors, if Bob waits at

a position that is a proper distance O(rS) from the horizon. In principle, though, Bob’s

“decoding sphere” could be located at a height where the black hole’s thermal atmosphere

has a constant temperature (independent of rS), At this height, Bob’s clock runs slower

than Schwarzschild time by a factor O(rS), and the outgoing radiation propagates from the

stretched horizon to Bob in O(1) time. From the requirement that cloning is unverifiable,

we infer that by Bob’s clock it should take time Ω(log rS) for Alice’s quantum information

to reappear in the thermal atmosphere. This version of the “no-cloning” argument usefully

differentiates between the time delay due to the climb from the stretched horizon and the

time delay due to the thermalization of the stretched horizon.

A serious weakness in the “no-cloning” argument is that we have assumed that, once

Alice’s information is received by Bob, he can decode the information instantaneously. In

fact, as emphasized in section 5, Bob’s decoding map is a complex quantum operation acting

on O(r2
S) qubits. One could plausibly argue that fundamental laws of physics prevent Bob

from performing the decoding operation fast enough for cloning to be verified behind the

horizon, no matter how quickly Alice’s qubits become encoded in the Hawking radiation.

Nevertheless, we find it intriguing that our estimate of the information retention time in

section 5 is of the same order as the “no-cloning” limit that can be inferred if we neglect

Bob’s decoding time.

7. Conclusions

The purpose of this article is largely pedagogical. On the one hand, many physicists

who are interested in the quantum behavior of black holes are familiar with Don Page’s

observations concerning the entanglement entropy of an evaporating black hole [12]. On

the other hand, most quantum information theorists know about the quantum capacity of

the quantum erasure channel [5, 18]. Here we point out that by invoking the latter we can
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refine and extend the former. We have tried to convey our main points without relying

too much on information-theoretic jargon, in the hope of reaching a broad audience among

those who are intrigued by these issues.

The essential tool that allows us to go further than Page is the theory of quantum

error correction, which was developed after [12] was written. In fact there is a delicious

irony at the core of our analysis. In section 3, we modeled the internal dynamics of the

black hole with a randomly selected unitary transformation, presuming that black holes,

though they do not destroy information, are nearly optimal thermalizers — they rapidly

convert information to a form that is very difficult to access in practice. However, a

random unitary is also a nearly optimal encoder that achieves the quantum capacity for

the quantum erasure channel. The dynamics that conceals quantum information effectively

in practice, by encoding it in a highly nonlocal manner, also at the same time protects the

information from damage as a matter of principle.

It is not fully realistic to model the internal dynamics with a random unitary trans-

formation, because typical unitary transformations can be generated only by quantum

circuits of exponential size. However, in section 5 we invoked recent results concerning

efficient approximate encoding circuits for quantum error-correcting codes [6, 7], indicat-

ing that plausible local dynamics really can thermalize quantum information quickly. We

argued in section 6 that our estimate of a black hole’s information retention time is just

barely compatible with the principle that black hole evaporation must not realize verifiable

quantum cloning.

Finally, what, if anything, are the broader implications of our observations for the

black hole information puzzle? We’re not sure, but we find it intriguing that the encoder

for a good quantum error-correcting code need not necessarily be unitary. Perhaps, then,

there could be an interesting middle ground between unitary black hole dynamics and full-

blown information loss — even if some of the information deposited in a black hole remains

inaccessible forever, quantum information encoded in small subsystems might escape in the

Hawking radiation with relatively little damage.

One possible model is to suppose that at any given time the black hole system B′

actually consists of two parts, the “accessible” system Bacc, for which we might suppose

that log |Bacc| is the Bekenstein-Hawking entropy, and an inaccessible system Bgone which

has been lost forever. For the information to be revealed to Bob, we require that correlations

are destroyed not just between the reference system N and Bacc, but rather between N and

B′ = BaccBgone. As the radiation leaks out, Bacc shrinks, but Bgone may grow, and there is

a competition between these two effects. If R is radiated away, then the effective dimension

of the discarded system is not |R| but rather |R|/|Bgone|; Alice’s quantum information is

revealed when this effective dimension becomes larger than |N |. Quantum information

encoded in a sufficiently small subsystem eventually escapes if the qubits are emitted in

the radiation faster than they are destroyed in the black hole’s interior, but the rate of

escape is suppressed to a degree that depends on the rate of destruction.

Since information loss, once allowed, tends to be highly infectious, it is difficult to for-

mulate deformations of quantum mechanics that incorporate a small amount of information

loss, yet are compatible with low-energy experimental constraints [31]. In the scheme we
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have just outlined, when a pure quantum state undergoes gravitational collapse to form a

black hole and then evaporates completely, some of the information encoded in the initial

quantum state really is destroyed, but the information encoded in any sufficiently small

subsystem survives nearly unscathed. It might be fruitful to investigate how easily this type

of partial information loss can be reconciled with the experimental successes of quantum

mechanics.
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