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Certifying that an n-qubit state synthesized in the laboratory is closetoa
given target state is a fundamental task in quantum information science.
However, existing rigorous protocols applicable to general target states

have potentially prohibitive resource requirements in the form of either
deep quantum circuits or exponentially many single-qubit measurements.
Here we prove that almost all n-qubit target states, including those with
exponential circuit complexity, can be certified from only O(n?) single-qubit
measurements. Given access to the target state’s amplitudes, our protocol
requires only O(n’) classical computation. This result is established by a
technique that relates certification to the mixing time of arandom walk.
Our protocol has applications for benchmarking quantum systems, for
optimizing quantum circuits to generate a desired target state and for
learning and verifying neural networks, tensor networks and various other
representations of quantum states using only single-qubit measurements.
We show that such verified representations can be used to efficiently
predict highly non-local properties of a synthesized state that would
otherwise require an exponential number of measurements on the state.
We demonstrate these applications in numerical experiments with up

to 120 qubits and observe an advantage over existing methods such as
cross-entropy benchmarking.

Our empirical knowledge of aquantum system often relies on statisti-
cal comparisons with atarget model of its state. An essential challenge
involves determining whether an n-qubit quantum state p preparedin
the laboratory achieves high fidelity (¢| p |¢) with an intended target
state|¢). In many practical scenarios, our knowledge of the target state
isencoded through an algorithmic representation that computes com-
plex amplitudes (x|¢) for any computational basis configurationx €
{0,1}", up to a global phase or normalization.

When the system size n remains modest, complete amplitude
information can be stored directly in classical memory. For larger quan-
tumsystems, sophisticated computational frameworks, such as neural
network quantum states or tensor network decompositions, provide
efficientalgorithmicaccess' . Many quantum states of theoretical and
experimental interest, including phase states, coherent Gibbs states,
graphstates, Greenberger-Horne-Zeilinger (GHZ) states, W states and

symmetric many-body configurations, admit compact algorithmic
descriptions that directly enable efficient amplitude computation.
With algorithmic access to the target state |¢) and experimental
accessto copies of the laboratory state p, quantum state certification
seeks to establish that the fidelity (| p |¢)is sufficiently close to unity.
Practical implementation demands protocols with minimal experi-
mental overhead and computational complexity. We therefore con-
centrate on measurement schemes employing only single-qubit
operations without preceding entangling circuits. Such measurements
integrate seamlessly with diverse experimental architectures and
generate classical data amenable to efficient analysis. The central
question we address is: how many single-qubit measurements are
required to reliably assess whether (¢| p |¢) is close to unity?
Extensive investigation has left unresolved whether certification
canbeachieved using (1) polynomially many single-qubit measurements
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oncopies ofanarbitrary n-qubit state p while (2) verifying overlap with
ageneric highly entangled target state |). These requirements appear
contradictory; since entanglement distributes quantum correlations
non-locally across multiple qubits, local measurement statistics seem-
ingly cannot capture global properties, such as fidelity (¢| p |¢), with
highly entangled states |¢).

Currentrigorous certification methods face considerable limita-
tions, namely, they either necessitate complex quantum operations
before measurement'”, require exponentially scaling resources'>'s %
or remain restricted to specialized state classes****"¥, Linear
cross-entropy benchmarking (XEB)*** provides a popular heuristic
for estimating fidelity with complex entangled states. Nevertheless,
XEB maintains theoretical validity only under white noise assump-
tions, where the laboratory state equals the target state corrupted by
global depolarizing channels. Under other noise models, XEB fails to
providereliable estimates and may indicate perfect fidelity even when
actual overlap vanishes, particularly under dephasing or coherent
error processes. See Supplementary Section A for a detailed review of
prior work. We resolve this challenge by introducing shadow overlap,
afidelity surrogate that can certify almost all quantum states with few
single-qubit measurements.

Mainresults

We introduce a simple procedure for certifying whether an n-qubit
(possibly mixed) laboratory state p is close to a target pure state |).
Our protocol (detailed in the next section and illustrated in Fig. 1) esti-
mates the shadow overlap, aquantity that serves as afaithful surrogate
for fidelity (¢|p|¢), while being efficiently estimable through
single-qubit Pauli measurements. Eachmeasurement collapses asingle
copy of the laboratory state p and produces a single number w. The
expectation E[w], which we refer to as the shadow overlap, exhibits a
precise relationship with fidelity (¢| p |¢) characterized by
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The parameter rdenotes the relaxation time of arandom walk on
the Boolean hypercube designed to sample from the computational
basis probability distribution m(x) := |(x|¢)|* determined by the target
state |¢). Thisrandom walk constructionis formalized in the next sec-
tion. The relaxation time 7 quantifies how rapidly the random walk
converges to its stationary distribution, which can be measured in
terms of the number of random bit flips, and relates to the spectral gap
of the associated transition matrix. When tis polynomially bounded,
shadow overlap provides an efficient proxy for global fidelity through
local measurement statistics.

This connection between shadow overlap and fidelity enables
efficient quantum certification for target states with polynomial relaxa-
tion times, as formalized in our first main result:

Theorem 1. (Certification of quantum states, informal) Given an n-qubit
target state |) with a relaxation time T > 1, there is a certification pro-
cedure that performs single-qubit Pauli measurementson T = O(1?/€?)
samples of an unknown n-qubit state p and, with high probability, out-
putsfailedifthefidelityislow (| p |¢) < 1 — € and outputs are certified
if thefidelity is high (¢|p |¢) > 1 — 2% . When one allows more general
single-qubit measurements on the unknown n-qubit state p, the sample
complexity can beimprovedto T = O(t/€).

Our certification protocol requires O(T) queries to the algorithmic
representation of the target state |¢). When both 7 < poly(n) and effi-
cientalgorithmic access are available, the entire procedureis compu-
tationally efficient. We establish polynomial relaxation time bounds
T < poly(n) for diverse structured quantum families, making our certi-
fication scheme practically efficient for these states. Specifically, phase
states and GHZ-like states achieve 7= O(n) (demonstrated in

Supplementary Sections G and I), while ground states of gapped
sign-free k-local Hamiltonians as well as any states that match the prob-
ability distribution [(x]g)|* for these ground states satisfy T = O(n¥)
(proveninSupplementary Section H).

Although not every quantum tate in a fixed computational basis
admits polynomial relaxation times, our rigorous analysis employing
sophisticated random walk techniques onthe Boolean hypercube {0, 1}"
establishesthat 7 < * = 9(n?)foralmostall n-qubit pure states drawn
from the Haar measure. This fundamental result is provenin Supplem-
etary Section D. Combined with Theorem1, we demonstrate that almost
allHaar-random quantums tates, including those with extremely high
entanglement and exponential circuit depth, can be certified using
polynomially many single-qubit measurements.

Theorem 2. (Certification of almost all quantum states, informal) All
except an exponentially small fraction 2™ of n-qubit pure states )
sampled from the Haar measure can be certified using O(n?/e)
single-qubit measurements. The protocol outputsfailed with high prob-
abilitywhen (Y| p |) < 1 — eand were certified when (Y| p |) > 1 — =
where " = O(n?).

Theorem 2 establishes that our protocol reliably determines
whether an arbitrary laboratory state p exhibits high fidelity with
thetarget state |¢), independent of the underlying noise mechanisms
affecting p. This noise independence contrasts sharply with XEB,
which operatesreliably only under global depolarizing noise assump-
tions and can erroneously certify laboratory states that have neither
entanglement nor high fidelity with the target state (Fig. 3). The
robustness and generality of our approach enable diverse applica-
tions that we examine in ‘Applications’ section, including machine
learning-based quantum tomography, experimental quantum device
benchmarking and quantum circuit optimization for state
preparation.

7

2r*

Certification procedure

Our certification protocol, illustrated in Fig. 1, operates through a sim-
ple two-phase process. During the first phase, we obtain a single copy
of the laboratory state p and randomly select one qubit from the n
available, which we label as k € {1, ..., n}. All qubits except the chosen
qubit kare measured inthe computational basis, yielding measurement
outcomes denoted collectively as z € {0, 1}"". Subsequently, we ran-
domly select one of the three Pauli measurements (X, Y or Z) with equal
probability and perform the measurement on qubit k. We denote the
resulting post-measurement state of this qubit as |s).

After collecting measurement data from the laboratory state p,
our protocol transitions to the second phase involving queries to the
algorithmic representation of the target state |¢). We assume access
to a computational model that encodes the target state
) = er{o,l}" Y(x) |x) through its computational basis amplitudes
(x). When provided with any input string x € {0,1}", this model returns
a complex value proportional to the corresponding amplitude g(x).
Importantly, we do not require these outputs to be properly normal-
ized.Since computing the global normalization factor er{o,l}" [P0
is generally computationally intractable, this flexibility broadens the
practical applicability of our approach.

Duringthe query phase, we interrogate the model twice using care-
fully constructed inputstrings z® and z*. Each query string 2¥ (where
a €10, 1}) hasiits kth bit set to the value a while all remaining n — 1 bits
match the measurement outcomes zobtained in the first phase. These
queryresults enable usto construct the conditional post-measurement
single-qubit state as follows:
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The final step combines measurement and query datato evaluate
thelocal overlap as
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Fig.1| Estimating the shadow overlap. The data collection phase: for each copy
ofthelaboratory state p, arandom qubit k is selected. All qubits except k are
measured in the Zbasis. Qubit kis measured inarandom X, Y or Zbasis to obtain
its classical shadow. Query phase: by querying the amplitudes of the target state

|y twice, the ideal post-measurement state | ,) of qubit kis found. Using the
classical shadow of qubit k from the laboratory state, its overlap w with ¢} ) is
evaluated. Finally, the shadow overlap E[w] is estimated by averaging w across
all copies.

© 1= (B Bls) (51— D]¥.). “)

Whenboth query results vanish, thatis, ¥(z) = ¥(z) = 0, we setw = 0.
We execute this complete two-phase protocol across Tindependent
copiesofthe laboratory state p, generating asequence of local overlaps
w,, ..., w7. Our final estimate of the shadow overlap between p and the
target stateistheempirical average @ = 1 E;l w;. This basic protocol
admits natural generalizations. Inthe Methods, we develop an extended
framework that measures m > 1 qubits in random Pauli bases rather
thanrestricting to a single qubit, providing additional flexibility for
specialized applications.

Analysis overview
The detailed analysis of our certification protocol is presented in the
Methods and Supplemetary Section C. Here, we provide intuitive
insightinto the underlying principles of our approach. To understand
the core mechanism, consider an idealized variant of our protocol
where qubit k is measured using the projective basis
{|z) (k| 1= [¥,) (Wi .|} rather than randomized Pauli measure-
ments, with lle,,) defined asinequation (3).Inthisidealized scenario,
we assign @ =1 when the measurement projects onto |¥ ,) (¥ ,|and
w =0otherwise. Whenthelaboratory stateis perfect, thatis, p = |¢) (¢,
and we measure n — 1 qubits in the computational basis yielding out-
come z, the conditional state of qubit k precisely matches |y ,) (¥, |
Consequently, every measurement yields w =1, resulting in an esti-
mated shadow overlap & = ; Ztrzl W, =Y|plY) =1

The protocol described earlier employs randomized Pauli meas-
urementsinstead of thisidealized projective measurement, computing
thelocal overlap through expression (4). The crucial insight is that the
operator (3s) (s| — 1) reproduces the desired projector |% ,) (¥.|in
expectation over random Pauli basis choices and measurement out-
comes. This property, detailed in Supplemetary Section B, constitutes
the fundamental principle behind classical shadow tomography™. For
perfectlaboratory state, thatis, p = |¢) (¢, thisensures that E[w] = 1.
The empirical average & is close to unity when p is close to |¢) (¢| and
sufficient samples T are collected. This analysis confirms that our
protocol will successfully certify high-fidelity laboratory states.

However, the critical question remains whether the protocol be
deceived into certifying low-fidelity states. Addressing this concern
requiresrecognizingthat E[w] = Tr [Lp]foraspecific observable L that
can be constructed through queries to the target state’s algorithmic
representation. Ideally, we want this observable to be the projector
|¢) (¢|onto the target state |¢). Our analysis in Supplemetary Section
C demonstrates that the actual observable L satisfies L |¢) = |¢) and

(PH|Llgpt) <1- % for any orthogonal state |¢*), where 7>1is a state-
dependent parameter. This makes L an approximate projector onto
the target state |¢). Consequently, we can differentiate between
high-fidelity and low-fidelity laboratory states p by measuring T = O(12)
samples of p.

Akeyinsight, proveninSupplemetary Section C, is that the observ-
able L shares identical eigenvalues with the normalized transition
matrix P of a suitably constructed random walk (or Markov chain)
on the Boolean hypercube {0, 1}". The parameter 1/7 corresponds to
the spectral gap of P, which is the difference between its largest and
second-largest eigenvalues. This implies that 7 is the relaxation time
of this random walk. This connection is useful because it allows us to
exploittherichliterature on Markov chain relaxation times to establish
upper bounds on Tand, consequently, on our certification protocol’s
sample complexity. We emphasize that this random walk serves purely
as an analytical tool and is not implemented as part of the protocol
itself.

The transition matrix Pis determined by the computational basis
measurement distribution m(x) = |<x|(/))|2 of the target state |¢). For a
generalstate|) = 3, yn V (x)e®® |x) the random walk transitions
between verticesx,y € {0,1}" according to

1_nmy) -
n n(x)+mn(y) X~
Po,y)=1{1 W = 5
=11 % S ¥, ®)
0 otherwise,

where adjacent vertices x - y differ in exactly one bit position. This
construction ensures that the stationary distribution assigns probabil-
ity m(x) to vertex x. For the uniformdistribution m(x) = lﬂ thisreduces
to the standard lazy random walk on the Boolean hypercube, where
each step either remains at the current vertex with probability 1/2 or
moves to a uniformly chosen neighbour with probability 1/2.

By exploiting results on random walks, we can analyse our certifi-
cation protocol’s performance. We identify numerous quantum state
families achieving 7 < poly(n), rendering our certification approach
efficient. These include generic Haar-random states (Supplemetary
SectionD), structured entangled families such as quantum phase states
(Supplemetary Section G), gapped ground states (Supplemetary Sec-
tion H) and GHZ-like states (Supplemetary SectionI).

Applications
We stated in Theorem 2 that almost all quantum states drawn from
the Haar measure can be certified using shadow overlaps, which can
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Fig.2|Neural network quantum state tomography: training and certifying a
neural quantum state with the shadow overlap. a, A dual-input neural network
istrained to learn a quantum phase state as in equation (6) with random phases
¢(x) on n =120 qubits using single-qubit measurements. The neural network
admits two inputs x,, X; € {0, 1}", which differ only in one bit, and computes Lold
asitsoutput. Applying this neural network architecture n times allow us to o)
compute the amplitude (x|¢) for agiven x. The dual-input neural quantum states
canbe trained using a shadow-based log loss, leveraging data acquired by
single-qubit measurements as prescribed in the shadow overlap protocol.

A shadow-based loss function trains the model on 50,000 measurement
dataacquired in the shadow overlap estimation, which consist of tuples

(X, X1, [P (x0) — P(x)))), representing the phase difference between two adjacent
strings x, and x,. The log loss is minimized via SGD. The model is then certified
using fidelity and shadow overlap on a separate data set of size 10,000. b, The
trained neural quantum state is used to estimate the subsystem purity of the
random phase state, exhibiting a high degree of entanglement compared witha
randomly initialized neural quantum state (Randomly Init. NQS).

be reliably estimated with few single-qubit measurements. In what
follows, we give an overview of variousinteresting applications of the
shadow overlap formalism.

Neural network quantum state tomography
The development of quantum technologiesincreasingly relies on clas-
sical computational models capable of capturing complex quantum
phenomenawhile remaining tractable for numerical analysis. Among
the most promising approaches are machine learning representations
that provide algorithmic access to quantum state amplitudes. These
models enable efficient computation of amplitudes ¢(x) € C for any
computational basis elementx € {0, 1}", up to aglobal phase.
Contemporary approaches include neural quantum states and
tensor network decompositions, which have been extensively stud-
ied in recent literature™"*>*3, Polynomial-size neural networks can
efficiently evaluate quantum amplitudes g(x) for represented n-qubit
states. Similarly, tensor networks with tractable contraction schemes,
including matrix product states” and tree tensor networks?, provide
efficient amplitude computation of the represented n-qubit state.

Learning ML models of quantum states

Our certification scheme yields an algorithm for learning ML models
of quantum states with rigorous sample complexity guarantees. This
isachieved using learning by hypothesis selection, which cangenerally
be applied to a set of models {¥,, ..., ¥,;} each describing an n-qubit
state |¢;), for i € [M]. Our objective is to use the measurement data
obtained fromidentical copies of astate p and learn amodel ¥;among
i e [MIwhich achieves the highest overlap (¢;| p |¢;). Thisapproach to
learningis relevantin applications where we either naturally have aset
of Mhypotheses (for example, from different theories describing the
physics of a quantum system) or where we can obtain such a discrete
set by casting a covering net (or carrying out some form of
coarse-graining) over alarger and more expressive family of models.

We showin Supplemetary Section] that, assuming the fast mixing
condition for the set of models {¥,, ---, ¥,}, we can use the shadow
overlap tolearnamodel thatachieves a high fidelity with the laboratory
state p using O(log M) copies of p. In Supplemetary Section J, we also
give a concrete application of this scheme for learning a feedforward
neural network representation of a quantum state. We show that the
sample complexity of this problemsscales as O (nL3W?s2 )for anetwork
of depth L, width Wand spectral norm sthat takes n-bit strings as input.
In Supplemetary Section J.3, we discuss another application of this
learning algorithmin the context of gapped ground states.

Training neural quantum states with shadow overlap

Although hypothesisselection provides alearning scheme with arigor-
ous sample complexity, the run time of this algorithm scales linearly
with the number of models M, rendering it inefficient for many appli-
cations where M grows exponentially with the number of qubits n.
In practice, though, as shown in Fig. 2 and detailed in Supplemetary
Section L.1, we can use the shadow overlap along with the stochastic
gradient descent (SGD) to efficiently train and certify an ML model of
aquantum state.

To thisend, we consider training aneural network representation
of an n-qubit state |¢) using a shadow-based log loss and the data
acquired by single-qubit measurementsin the shadow overlap proto-
col. Figure 2 shows an application of this scheme to learning highly
entangled phase states

1

) = (,6)

Z el |x)

27 yefo,1)"

with random binary phases ¢(x) € {0, m} on n =120 qubits. Such quan-
tum states are indistinguishable from states with exponentially large
circuit complexity****, and exhibit volume-law scaling of entangle-
ment*®. The findings reported in Fig. 2 indicate that, beyond a certain
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Fig. 3| Benchmarking with the shadow overlap. a-d, A comparison of the
(normalized) shadow overlap, fidelity and XEB in benchmarking noisy quantum
states under white noise (that is, global depolarizing noise), dephasing noise
and coherent noise (realized as small Gaussian errors in the wavefunction), for a
4-qubit (a) and a 20-qubit (b) Haar random state, along with a 4-qubit (c) and a
20-qubit (d) random phase state of the form Uppase - ®L; |¢;), where ;) are
single-qubit states with random real amplitudes and U, is diagonal with
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random complex phases. In this numerical experiment, the shadow overlap is
normalized as detailed in Supplemetary Section F. Error bars indicate statistical
measurement errors. Eachindependent run uses a sample size of N =50, and
the average and variance are computed over 500 independent runs. XEB tracks
the fidelity well under white noise but fails under dephasing and coherent
noise. In contrast, shadow overlap performs robustly across all regimes with
lower variance.

training threshold, the model attains a fidelity very close to 1.00 with
thetarget state. As explained next, this performance can also be certi-
fied using the shadow overlap, as an efficient alternative to the fidelity.

Certifying ML models

One drawback of machine learning models for quantum states is that
their training usually relies on heuristic algorithms. The absence of
performance guarantees highlights the need for certification proce-
dures capable of efficiently verifying the accuracy of the trained mod-
els. The result of Theorem 1 can be restated in terms of certifying the
overlap between an n-qubit state |¢) and its trained ML model with a
relaxation time 7. This is achieved using single-qubit Pauli measure-
ments performed independently on O(7%/€?) copies of |¢) along with
two queries to the trained ML model per |¢) copy.

Figure 2 shows a numerical implementation of this certification
procedure foradual-input neural network representation of a120-qubit
random phase state. After training the neural net with 50,000 meas-
urements using shadow-overlap-based stochastic gradient decent,
we estimate and compare the shadow overlap of the resulting model
withits fidelity. We observe that the predicted shadow overlap closely
mirrors the fidelity, serving as an effective proxy.

Estimating sparse observables
The certified ML models of quantum states can be employed to statis-
tically estimate many properties of interest®" if in addition to query

access, we assume the models are also equipped with sampling access:
the ability to sample from the measurement distribution corresponding
to |¢(x)|? = [{(x|¢)|>. The sampling access can be obtained in various ways
as follows: Markov chain sampling via running the random walk defined
in equation (5) or the Metropolis-Hastings algorithm, measuring the
certified state p in the computational basis, or using autoregressive
methods to obtain direct sampling access®’.

In Supplemetary Section K, we show how to apply a verified ML
model of aquantum state with query and sampling access to estimate
the expectation value of any sparse observable G, such as the energy
of alocal Hamiltonian, or highly non-local properties, such as Rényi
entanglement entropies, up to an error € with a number of samples
that scales as T = O ((¢)| G? |¢) /€?) . When no certified ML model is
available, estimating certain non-linear observables, such as the sub-
system purity Tr(pj), requiresanumber of samples that are exponen-
tial in the size of the subsystem A; for example, see ref. 48 for an
exponential lower bound that applies to any single-copy measure-
ments, and ref. 12 for an upper bound via the classical shadow formal-
ism.InSupplemetary Section K, the same task can be conducted using
averified ML model with a sample complexity O (1/€?), independent
of the system ssize.

InFig. 2, we demonstrate this feature with anumerical experiment
on the trained neural network representation of the random phase
statein equation (6). The purity Tr(pi) of the phase state is estimated
for subsystems of size |A| {1, ..., 120}, confirming that the state of the
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Fig. 4 | Optimizing quantum circuits for state preparation. Training a
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corresponds to the output of a one-dimensional IQP circuit” infused with
random T gates. The training is first performed by variationally optimizing for
maximum shadow overlap. We then assess this method’s performance against
fidelity-based training. Changes in both fidelity and shadow overlap are
monitored across optimization steps. a, We see that, akin to the linear decrease in
Hamming distance between two binary strings as suitable bits are flipped, under
shadow-overlap-based training the deviation of the shadow overlap from 1
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decreaseslinearly as suitable gates are added to the circuit. This contrasts with
the fidelity, which fails to exhibit a steady, gradual increase as the number of state
construction steps increases. b, Because the optimization landscape of fidelity
has abarren plateau, training with fidelity fails to find a high-fidelity state-
preparation circuit. In contrast, training with shadow overlap successfully finds a
high-fidelity circuit. The improvementin optimization landscape is comparable
to thatachieved by local fidelity*>~, but with a key advantage, namely, while local
fidelity requires either deep quantum circuits or exponentially many single-qubit
measurements for general target states |¢), shadow overlap needs only
polynomially many single-qubit measurements.

subsystems is close to the maximally mixed state as guaranteed by the
rigorous proofs.

Benchmarking quantum devices

Certifying the fidelity between a state p prepared using a quantum
device and a known quantum state |¢¢) offers a rigorous approach for
benchmarking quantummachines. However, the exponential resources
and the high level of control needed for estimating fidelity limit the
applicability of thisapproachin practice. To address these challenges,
anumber of studies have proposed and deployed other statistical
quantities that act as a form of proxy for the fidelity in the situations
often encountered practically*****°°, One such proxy is the XEB, a
prominent metricemployed in the evaluation of quantum supremacy
experiments with local random quantum circuits***., Given an n-qubit
targetstate () = 3 o V m(x)e?™ |x) and the laboratory state p,

their XEB score is defined by

2nEx~<x|p|x) T[(X) -

XEB= ————«—,
20E (X)) — 1

)

whereE, ., and E,_ ., denote the expectation when x is sampled
accordingto measurement distribution m(x) and (x| p |x), respectively.
The XEBscoreis designed toensurethat XEB matches thefidelity when
the laboratory state p = (1 —p) |¢) (Y| +p— equals the target state
subject to white noise with parameter p; see refs. 38,49,51 and Sup-
plemetary Section A. From equation (7), we can also observe that XEB
entirely ignores the phaseinformation e in the target state |). Con-
sequently, itis notareliable proxy for the fidelity under various phys-
ically relevant noise models, such as dephasing or coherent noise.
InFig. 3, we compare the performance of shadow overlap, fidel-
ity and XEB. We observe that, when the laboratory state p is subject
to white noise (first row), XEB performs well for Haar random states
but exhibits muchlarger variance for random phase states. However,
under dephasing noise (second row), XEB incorrectly reports near
perfect fidelity, even when the actual fidelity is far from 1. In the pres-
ence of coherent noise (third row), XEB can also deviate substantially

from fidelity. In contrast, the shadow overlap tracks the fidelity quite
well across different noise regimes and system sizes for white noise,
dephasing noise and coherent noise. Refer to Supplemetary Sections
A, FandL.2 foramore detailed discussion.

Optimizing quantum circuits for state preparation

Many variational quantum algorithms employ the fidelity between
two quantum states as their cost function. However, these
fidelity-based cost functions suffer from exponentially vanishing
gradients, aphenomenon known as barren plateaus®* **, and require
a high sample complexity for statistical estimation. Shadow overlap
E[w] offers an alternative to the fidelity (| p |¢) in such algorithms.
Beyond demanding a substantially lower sample complexity, the
shadow overlap may provide an improved optimization landscape
with non-vanishing gradients. Specifically, when the target state exhib-
its no global correlations and its probability amplitudes are well dis-
tributed across the Boolean hypercube {0, 1}", the shadow overlap
behaves similarly to the Hamming distance. This correspondence
becomes exact for bit strings in the X-basis, where the Hamming dis-
tance and shadow overlap are identical.

Consider the illustrative case of |¢) = |+)®". As detailed in the
Methods, shadow overlapis the expectation value Tr(Lp)ofthe observ-
able = - Z, 1 [+) (+]; ® 1\;. This observable is a sum of local terms,
offering favourable optlmlzatlon features compared with the non-local
observable |+)(+| " used in fidelity estimation. A related approach in
quantum machine learning>*~¢, known as local fidelity, employs the
observable X Z LU0y (0]; ® n\,)wforatargetstate |¢) = U|0™).Both
local ﬁdellty and shadow overlap offer improved optimization land-
scapes. However, local fidelity is experimentally challenging. While it
can be efficiently estimated using classical shadows' for
low-entanglement states |¢), the general case is highly inefficient. For
|g) = U|0")withdeep circuit U, localfidelity isasum of highly non-local
terms: U(|0) (0|; ® 1,; ) U. Consequently, measuring local fidelity
requires eitherimplementing a deep circuit U or performing an expo-
nential number of single-qubit measurements (see Supplemetary
Section A for further details). In contrast, shadow overlap maintains
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high measurement efficiency, requiring only a polynomial number of
single-qubit measurements.

In a numerical experiment presented in Fig. 4 and discussed in
Supplemetary Section L.3, we investigate this feature of the shadow
overlapinthe context of training quantum circuits to optimally prepare
atarget state, corresponding to the output of a one-dimensional IQP
circuit” infused with random T gates. When employing n = 50 qubits,
fidelity-based training encounters barren plateaus, whereas shadow
overlap-based training successfully prepares the target state with a
fidelity very closeto1.

Outlook

Our certification protocol based on the shadow overlap demonstrates
thatalmost allquantum states can be certified using polynomially many
independent single-qubit Pauli measurements. Further extending the
reach of our certification protocol raises many interesting open questions.

Quantum states with fast relaxation times

What families of quantum states provably admit a poly(n) relaxation
time with respect to the Markov chain (5) introduced in our analysis?
We show that Haar random quantum states exhibits a relaxation time
bounded by 7 < O(n?). Can we show that states prepared with (random)
quantum circuits of arbitrary depth satisfy arelaxation time 7 < poly(n)?

Certifying any states with few single-qubit measurements
While our protocol successfully certifies almost all states, the ultimate
goal would be universal certification of any state using only poly(n)
single-qubit measurements. A recent follow-up work*® demonstrates
that adaptive single-qubit measurements with mid-circuit classical
feedforward canindeed certify arbitrary target states. However, such
adaptive protocols require sophisticated experimental control and
are equivalent to universal quantum computation®’. Furthermore,
their result assumes amore powerful form of algorithmic access to the
target state thanin our setting, namely, the ability to compute ampli-
tudes in any product basis rather than just the computational basis.
This stronger assumption limits the applicability of their protocol to
some tasks discussed in ‘Applications’ section. This raises a refined
open question, namely: can we achieve universal state certification
using only poly(n) non-adaptive single-qubit measurements without
mid-circuit classical feedforward?

Mixed states

Canasimilar certification protocol be developed when the target state
belongs to a certain family of mixed quantum states? In particular, can
almost all approximately low-rank mixed states be certified with few
single-qubit measurements?

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
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Methods

Our certification protocol achieves high efficiency by exploiting a
deep connection between quantum state fidelity and Markov chain
mixing times. We present the complete framework underlying
our results, showing how the shadow overlap naturally serves as a
proxy for fidelity and how its performance is linked to the mixing
properties of an associated Markov chain, leading to the proof of
Theorem 1.

Certification protocol

We analyse the performance of a generalized version of the shadow
overlap protocol introduced in the main text. In this version detailed
below, we choose m qubits uniformly at random and measure eachin
arandomized basis. This section includes the proof of Theorem 1 of
the maintext, corresponding to the m =1case, as well as the equivalent
statement for the general level-m protocol. Given an n-qubit target
state |¢)specified byamodel ¥,and an arbitrary laboratory state p, the
level-m protocol proceeds as follows:

(1) Among the total n qubits of p, choose a uniformly random sub-
set of size at most m qubits. Denote these qubits by k= {k,, ..., k;}
where r<mis the size of the subset.

(2) Performsingle-qubit Z-basis measurements on all but qubits k;,

.., k. of p. Denote the measurement outcomes collectively by
z, {0, 13",

(3) Foreachqubitk,, ..., k., choose an X, Y or Z-basis measurement
uniformly at random and measure that qubit of p. Denote the
post-measurement state of the qubits k,, ..., kK, by |s)), ..., |s;),
respectively. Compute the classical shadow

0=Cls) (Sl - 1) ®(BIs) (2] —1)® - ®BIsy) (8| —1).  (8)

(4) Querythe model ¥ for all choices of r-bit strings ¢, and ¢, that
differ exactly in rbits (that is, ¢,, , € {0, 1}"and dist(¢,, ¢,) =r) to
obtain the normalized states

w( (€1))|€>+W( (52))|€>

|£I/€1 €z> . (9)
(el) (62)
Vi G o)
Here the n-bit string 2" matches ¢ € {0, 1}’ on bits k,, ..., k,and
equalsz,€{0,1}""on the remaining n - rbits.
(5) Compute the overlap
@ :=Tr(l,o)withL, := o) (wir]. (10)
61,6, €{0,1)
dist(él,ez) =r
(6) Repeatsteps1-5for Ttimes to obtain overlaps wl, ..., 7. Report

the estimated shadow overlap given by w == Zt_ ;.
(7) Ifthe estimated shadow overlap @ > 1— 4—1 the outputis
certified. Otherwise, the output failed.

Certification efficiency and mixing time

Fix alevel mforthe certification protocol. The measurement distribu-
tion mm(x) = |(x|y)|*is a distribution on a graph G = (V, E) where the ver-
tices V=10, 1}" are n-bit strings, and an edge e = (x, y) exists between
verticesxandywhentheydifferinke{l,...,m}bits.Let 8 := {x : m(x) > 0}
denote the supportof m(x). Let p, _ T Z ) be number of neighbours

of each vertex. We define a random walk or a Markov chain on this
graph. The transition matrix P =Y » P(x,y) |x) ( y| of this walk is
defined by

xe{0,1}

1_

N n(x)+n(y) (x,y) €k
Pxy)=1 ™ x=y, 1
x.3) N (7 xye TEO+T() Y ()
0 otherwise.

In our application, it is more convenient to consider a normalized
version of the transition matrix P given by s:PS™: where
§i= ers |x) (x|. We claim that the shadow overlap estimated in
level m of our protocol equals the expected value of an observable
directly linked to the normalized transition matrix.

Proposition 3. Suppose the level-m certification protocol is performed
on copies of the state p and a model ¥ of the quantum state |¢) =
Yretoqy VI)E®™ [x). Define the ‘phase matrix' by F =3, 1 €?™ x) (x|
and let L be the Hermitian operator given by

L =FSiPSTiFT, 12)

Wehave L |¢) = |¢)and Tr(Lp) = E[w], where E[w] denotes the expected
output of the certification protocol.

Proof. The entries of the observable L for any x € sare given by

1 VrI(Y) Li(p()-( )

N m(x)+m(y) (X'y) € E’
xlL|yy=11 ) x= 13)
WLn=13 T S »

0 otherwise.

For x € 8, we have

KIL|) = x| L) (x) + 2 (I L| )<y
y#x
=1 ) ip(0)
=- \m(x)e
Ny:(y;x)ef m0)+m(y) @)
1 VIO il px)-()) ip(y)
+= Y2 e Vr(ye (14)
Ny:(y,x)eE m(x)+m(y) (y
_ 1 m(x) n(y) ) ip(x)
= - Vm(x)e
N y:(y,x)ef(ﬂ@)w(y) m()+m(y) )
= \/m(x)ei?®,

Thisshows that L |) =
subsets of qubits withsizer<m.Thereare y _ ZZ’_I(

|¢). Next, we prove that Tr(Lp) = E[w]. Consider
Z )choices forthe

location of these qubits. For any r, we enumerate the chosen qubits by
ki, ..., k., and collectively denotethemby k= {k,, ..., k,}. For afixed k, the
set {z, € {0, 1}"""} denotes all the possible bit strings on the remaining
n - rbits. Directinspection reveals that the observable L corresponding
tothe model ¥ can be expressed as

=5 ¥ %

relm] k=tky,...k} z {0,

2i) (2l @ Ly, s

where L, isanoperator actingonrqubits {k,, ..., k} andis given by

L, :=

k

|22 (w2 with [ 262)
61,6, €{0,1)

dist(éy,6,) =r
() (52 )ien

oo

(16)
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Inthis expression, the binary string z” equals £ € {0, 1}" on bits ki, ..., k;
andequalsz,€{0,1}""ontheremaining n - rbits. Let o denote the clas-
sical shadow obtained after performing randomized Pauli measure-
ments on the post-measurement state of qubits r. That is, if the r
single Pauli measurements return states |sy),...,|s,), we set o=
Gls) 11— 1) ®Bls2) (2] — 1) ® - @ (s, (s;] — 1). It follows from the

discussionin Supplemetary Section B that Eqpygons[0] = —2222_ where
Tr((zxlplzk))

the expectation is over Paulimeasurements on qubits k. Using this, we
canexpand Tr[Lp]as follows:

: @lplz)
Tritpl =5 X Y TrzlplzTr(L
Noore [m]  zeloy™ ( 2 Tr(<zk\mzk>>)
k = {klv ,k,}
— (Zklplze)
= Eia Tr (sz Tr(<zk|mzk>>)

= Eg Tr (szEshadows[g])
= Ek,zkEshacIows[Tr (szo)] = Flw].

Inthe last expression, the expectationis with respect to the location of
the Pauli Zmeasurements, their outcomes, as well as the randomized
measurements on the remaining qubits.

Shadow overlap as a proxy for fidelity

When we first average over the classical shadows, the shadow overlap
Elw] is equal to the average overlap between the postselected state
on p and the postselected state on the target state |¢). Hence
0 < Flw] = Tr(Lp) < 1foranystatep. Thisimpliesthat 0 <L </.

Theorem4.let A, =1— % bethesecond largest eigenvalue of the transi-
tion matrix Pdefined with respect to the measurement distribution r(x)
of the state |p). The shadow overlap satisfies

if E[w]>1-¢ thenwehave WplY)>1-r1e 17)

if (Y|plY)>1—¢€ thenwehave Elw]>1-e. (18)

This implies that we can check if fidelity is close to one by checking if
shadow overlapis close to one.

Proof. Wefirst study the spectrum of the observable L. From the previ-
oustheorem and the fact that 0 < L </, the eigenvalues of L are given
byl=A,=A,=2A,>-->0.The two operators Pand L are related by a
similarity transformation. Hence, they have the same set of eigenval-
ues. Let |4;) denote the eigenstate of observable L corresponding to
the eigenvalue A,. We claim that the top eigenstate |1,) of the operator
Listhe quantum state |¢). This can be seen by the direct calculation or
by noting that the measurement distribution m(x) is the unique station-
ary distribution of P. Hence, we have P|m)=|m), where |m) =
Y veto)” \/m(x) |x). From this and the fact that |m) = F' |¢), we have
L|¢) = |¢), as claimed.

Now we prove the implication stated in equation (17). From Propo-
sition 3, we know that E[w] = Tr[Lp]. Assuming E[w] >1- €, we have

1-e€ < Elw] =Tr[Lp]

=lplp)+ ;Ai Ailp A using |1o) = |¢)

<@lply+A Y (Al plA) definition of A;
i>1

SWlplgy+ A - Wlpl)) since Tr(p) = 1.

By rearranging the two sides of the inequality, we arrive at the bound
Wlplg)y>1- ﬁ =1-1e. We next prove the implication stated in (18).

Elw] = Tr[Lp]
= WP 1Y) + Ty Ai(Ail p ;) using |Ao) = |¢)
z{@lplp)zl-e

This concludes the proof of this theorem.

Sample complexity

Aswe show inSupplemetary Section C, using equations (18) and (17),
we can certify the overlap between the target state |¢) and an
unknown state p using T = 22m+4 . :—2 . log(%) copies of the state p with
probability atleast1 - 6. Moreover, we canimprove the dependency
of the sample complexity on t/e for the level m =1 protocol by replac-
ing randomized Pauli measurements with measurement in the basis
{1Wk2) (Przl, 1 = |Pkz) (Fi|} - In this setting, we can show that
T= O(E . Iog(%)) samples of the unknown state p are sufficient for the
certification protocol to succeed with probability at least1- 6.

Data availability

The data used to generate all figures are openly available via
Zenodo®. In the Zenodo repository, the data associated with the
three main numerical experiments can be found in text files in
neural -quantum-state/, pickle files in benchmarking-vs-XEB/
and pickle filesinbenchmarking-vs-shadow/.

Code availability
The code for conducting the numerical experiments and generat-
ing the data in this work is available via Zenodo at https://zenodo.
org/records/15873712 (ref. 60). The current development version
is available via GitHub at https://github.com/hsinyuan-huang/
certify-quantum-states.
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