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Certifying almost all quantum states with few 
single-qubit measurements
 

Hsin-Yuan Huang    1,2,3  , John Preskill    2,4   & Mehdi Soleimanifar    2 

Certifying that an n-qubit state synthesized in the laboratory is close to a 
given target state is a fundamental task in quantum information science. 
However, existing rigorous protocols applicable to general target states 
have potentially prohibitive resource requirements in the form of either 
deep quantum circuits or exponentially many single-qubit measurements. 
Here we prove that almost all n-qubit target states, including those with 
exponential circuit complexity, can be certified from only O(n2) single-qubit 
measurements. Given access to the target state’s amplitudes, our protocol 
requires only O(n3) classical computation. This result is established by a 
technique that relates certification to the mixing time of a random walk. 
Our protocol has applications for benchmarking quantum systems, for 
optimizing quantum circuits to generate a desired target state and for 
learning and verifying neural networks, tensor networks and various other 
representations of quantum states using only single-qubit measurements. 
We show that such verified representations can be used to efficiently 
predict highly non-local properties of a synthesized state that would 
otherwise require an exponential number of measurements on the state. 
We demonstrate these applications in numerical experiments with up 
to 120 qubits and observe an advantage over existing methods such as 
cross-entropy benchmarking.

Our empirical knowledge of a quantum system often relies on statisti-
cal comparisons with a target model of its state. An essential challenge 
involves determining whether an n-qubit quantum state ρ prepared in 
the laboratory achieves high fidelity ⟨ψ|ρ |ψ⟩ with an intended target 
state |ψ⟩. In many practical scenarios, our knowledge of the target state 
is encoded through an algorithmic representation that computes com-
plex amplitudes 〈x∣ψ〉 for any computational basis configuration x ∈ 
{0, 1}n, up to a global phase or normalization.

When the system size n remains modest, complete amplitude 
information can be stored directly in classical memory. For larger quan-
tum systems, sophisticated computational frameworks, such as neural 
network quantum states or tensor network decompositions, provide 
efficient algorithmic access1–11. Many quantum states of theoretical and 
experimental interest, including phase states, coherent Gibbs states, 
graph states, Greenberger–Horne–Zeilinger (GHZ) states, W states and 

symmetric many-body configurations, admit compact algorithmic 
descriptions that directly enable efficient amplitude computation.

With algorithmic access to the target state |ψ⟩ and experimental 
access to copies of the laboratory state ρ, quantum state certification 
seeks to establish that the fidelity ⟨ψ|ρ |ψ⟩ is sufficiently close to unity. 
Practical implementation demands protocols with minimal experi-
mental overhead and computational complexity. We therefore con-
centrate on measurement schemes employing only single-qubit 
operations without preceding entangling circuits. Such measurements 
integrate seamlessly with diverse experimental architectures and 
generate classical data amenable to efficient analysis. The central 
question we address is: how many single-qubit measurements are 
required to reliably assess whether ⟨ψ|ρ |ψ⟩ is close to unity?

Extensive investigation has left unresolved whether certification 
can be achieved using (1) polynomially many single-qubit measurements 
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Supplementary Sections G and I), while ground states of gapped 
sign-free κ-local Hamiltonians as well as any states that match the prob-
ability distribution ∣〈x∣ψ〉∣2 for these ground states satisfy τ = 𝒪𝒪𝒪nκ) 
(proven in Supplementary Section H).

Although not every quantum state in a fixed computational basis 
admits polynomial relaxation times, our rigorous analysis employing 
sophisticated random walk techniques on the Boolean hypercube {0, 1}n 
establishes that τ ≤ τ∗ = 𝒪𝒪𝒪n2) for almost all n-qubit pure states drawn 
from the Haar measure. This fundamental result is proven in Supplem-
etary Section D. Combined with Theorem 1, we demonstrate that almost 
all Haar-random quantum states, including those with extremely high 
entanglement and exponential circuit depth, can be certified using 
polynomially many single-qubit measurements.

Theorem 2. (Certification of almost all quantum states, informal) All 
except an exponentially small fraction 2−Ω(n) of n-qubit pure states |ψ⟩ 
sampled from the Haar measure can be certified using 𝒪𝒪𝒪n2/ϵ)  
single-qubit measurements. The protocol outputs failed with high prob-
ability when ⟨ψ|ρ |ψ⟩ < 1 − ϵ and were certified when ⟨ψ|ρ |ψ⟩ ≥ 1 − ϵ

2τ∗
, 

where τ∗ = 𝒪𝒪𝒪n2).
Theorem 2 establishes that our protocol reliably determines 

whether an arbitrary laboratory state ρ exhibits high fidelity with 
the target state |ψ⟩, independent of the underlying noise mechanisms 
affecting ρ. This noise independence contrasts sharply with XEB, 
which operates reliably only under global depolarizing noise assump-
tions and can erroneously certify laboratory states that have neither 
entanglement nor high fidelity with the target state (Fig. 3). The 
robustness and generality of our approach enable diverse applica-
tions that we examine in ‘Applications’ section, including machine 
learning-based quantum tomography, experimental quantum device 
benchmarking and quantum circuit optimization for state 
preparation.

Certification procedure
Our certification protocol, illustrated in Fig. 1, operates through a sim-
ple two-phase process. During the first phase, we obtain a single copy 
of the laboratory state ρ and randomly select one qubit from the n 
available, which we label as k ∈ {1, …, n}. All qubits except the chosen 
qubit k are measured in the computational basis, yielding measurement 
outcomes denoted collectively as z ∈ {0, 1}n−1. Subsequently, we ran-
domly select one of the three Pauli measurements (X, Y or Z) with equal 
probability and perform the measurement on qubit k. We denote the 
resulting post-measurement state of this qubit as |s⟩.

After collecting measurement data from the laboratory state ρ, 
our protocol transitions to the second phase involving queries to the 
algorithmic representation of the target state |ψ⟩. We assume access 
to a computational model that encodes the target state 
|ψ⟩ = ∑x∈{0,1}n ψ𝒪x) |x⟩  through its computational basis amplitudes 
ψ(x). When provided with any input string x ∈ {0, 1}n, this model returns 
a complex value proportional to the corresponding amplitude ψ(x). 
Importantly, we do not require these outputs to be properly normal-
ized. Since computing the global normalization factor ∑x∈{0,1}n |ψ𝒪x)|2 
is generally computationally intractable, this flexibility broadens the 
practical applicability of our approach.

During the query phase, we interrogate the model twice using care-
fully constructed input strings z(0) and z(1). Each query string z(a) (where 
a ∈ {0, 1}) has its kth bit set to the value a while all remaining n − 1 bits 
match the measurement outcomes z obtained in the first phase. These 
query results enable us to construct the conditional post-measurement 
single-qubit state as follows:

||Ψk,z⟩ ∶=
Ψ 𝒪z(0)) |0⟩ + Ψ 𝒪z(1)) |1⟩
√|Ψ 𝒪z(0))|2 + |Ψ 𝒪z(1))|2

. (3)

The final step combines measurement and query data to evaluate 
the local overlap as

on copies of an arbitrary n-qubit state ρ while (2) verifying overlap with 
a generic highly entangled target state |ψ⟩. These requirements appear 
contradictory; since entanglement distributes quantum correlations 
non-locally across multiple qubits, local measurement statistics seem-
ingly cannot capture global properties, such as fidelity ⟨ψ|ρ |ψ⟩, with 
highly entangled states |ψ⟩.

Current rigorous certification methods face considerable limita-
tions, namely, they either necessitate complex quantum operations 
before measurement12–17, require exponentially scaling resources12,18–29 
or remain restricted to specialized state classes25,27,29–37. Linear 
cross-entropy benchmarking (XEB)38–41 provides a popular heuristic 
for estimating fidelity with complex entangled states. Nevertheless, 
XEB maintains theoretical validity only under white noise assump-
tions, where the laboratory state equals the target state corrupted by 
global depolarizing channels. Under other noise models, XEB fails to 
provide reliable estimates and may indicate perfect fidelity even when 
actual overlap vanishes, particularly under dephasing or coherent 
error processes. See Supplementary Section A for a detailed review of 
prior work. We resolve this challenge by introducing shadow overlap, 
a fidelity surrogate that can certify almost all quantum states with few 
single-qubit measurements.

Main results
We introduce a simple procedure for certifying whether an n-qubit 
(possibly mixed) laboratory state ρ is close to a target pure state |ψ⟩. 
Our protocol (detailed in the next section and illustrated in Fig. 1) esti-
mates the shadow overlap, a quantity that serves as a faithful surrogate 
for fidelity ⟨ψ|ρ |ψ⟩ , while being efficiently estimable through 
single-qubit Pauli measurements. Each measurement collapses a single 
copy of the laboratory state ρ and produces a single number ω. The 
expectation 𝔼𝔼𝔼ω], which we refer to as the shadow overlap, exhibits a 
precise relationship with fidelity ⟨ψ|ρ |ψ⟩ characterized by

𝔼𝔼𝔼ω] ≥ 1 − ϵ ⇒ ⟨ψ|ρ |ψ⟩ ≥ 1 − τϵ, (1)

⟨ψ|ρ |ψ⟩ ≥ 1 − ϵ ⇒ 𝔼𝔼𝔼ω] ≥ 1 − ϵ. (2)

The parameter τ denotes the relaxation time of a random walk on 
the Boolean hypercube designed to sample from the computational 
basis probability distribution π(x) := ∣〈x∣ψ〉∣2 determined by the target 
state |ψ⟩. This random walk construction is formalized in the next sec-
tion. The relaxation time τ quantifies how rapidly the random walk 
converges to its stationary distribution, which can be measured in 
terms of the number of random bit flips, and relates to the spectral gap 
of the associated transition matrix. When τ is polynomially bounded, 
shadow overlap provides an efficient proxy for global fidelity through 
local measurement statistics.

This connection between shadow overlap and fidelity enables 
efficient quantum certification for target states with polynomial relaxa-
tion times, as formalized in our first main result:

Theorem 1. (Certification of quantum states, informal) Given an n-qubit 
target state |ψ⟩ with a relaxation time τ ≥ 1, there is a certification pro-
cedure that performs single-qubit Pauli measurements on T = 𝒪𝒪𝒪τ2/ϵ2) 
samples of an unknown n-qubit state ρ and, with high probability, out-
puts failed if the fidelity is low ⟨ψ|ρ |ψ⟩ < 1 − ϵ and outputs are certified 
if the fidelity is high ⟨ψ|ρ |ψ⟩ ≥ 1 − ϵ

2τ
. When one allows more general 

single-qubit measurements on the unknown n-qubit state ρ, the sample 
complexity can be improved to T = 𝒪𝒪𝒪τ/ϵ).

Our certification protocol requires 𝒪𝒪𝒪T) queries to the algorithmic 
representation of the target state |ψ⟩. When both τ ≤ poly(n) and effi-
cient algorithmic access are available, the entire procedure is compu-
tationally efficient. We establish polynomial relaxation time bounds 
τ ≤ poly(n) for diverse structured quantum families, making our certi-
fication scheme practically efficient for these states. Specifically, phase 
states and GHZ-like states achieve τ = 𝒪𝒪𝒪n)  (demonstrated in 
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ω ∶= ⟨Ψk,z|| 𝒪3 |s⟩ ⟨s| − �) ||Ψk,z⟩ . (4)

When both query results vanish, that is, Ψ(z(0)) = Ψ(z(1)) = 0, we set ω = 0. 
We execute this complete two-phase protocol across T independent 
copies of the laboratory state ρ, generating a sequence of local overlaps 
ω1, …, ωT. Our final estimate of the shadow overlap between ρ and the 
target state is the empirical average ω̂ = 1

T
∑T

t=1 ωt. This basic protocol 
admits natural generalizations. In the Methods, we develop an extended 
framework that measures m > 1 qubits in random Pauli bases rather 
than restricting to a single qubit, providing additional flexibility for 
specialized applications.

Analysis overview
The detailed analysis of our certification protocol is presented in the 
Methods and Supplemetary Section C. Here, we provide intuitive 
insight into the underlying principles of our approach. To understand 
the core mechanism, consider an idealized variant of our protocol 
where qubit k  is measured using the projective basis 
{||Ψk,z⟩ ⟨Ψk,z|| , 1 − ||Ψk,z⟩ ⟨Ψk,z||}  rather than randomized Pauli measure-
ments, with ||Ψk,z⟩ defined as in equation (3). In this idealized scenario, 
we assign ω = 1 when the measurement projects onto ||Ψk,z⟩ ⟨Ψk,z|| and 
ω = 0 otherwise. When the laboratory state is perfect, that is, ρ = |ψ⟩ ⟨ψ|, 
and we measure n − 1 qubits in the computational basis yielding out-
come z, the conditional state of qubit k precisely matches ||Ψk,z⟩ ⟨Ψk,z||. 
Consequently, every measurement yields ω = 1, resulting in an esti-
mated shadow overlap ω̂ = 1

T
∑T

t=1 ωt = ⟨ψ|ρ |ψ⟩ = 1.
The protocol described earlier employs randomized Pauli meas-

urements instead of this idealized projective measurement, computing 
the local overlap through expression (4). The crucial insight is that the 
operator 𝒪3 |s⟩ ⟨s| − 1) reproduces the desired projector ||Ψk,z⟩ ⟨Ψk,z|| in 
expectation over random Pauli basis choices and measurement out-
comes. This property, detailed in Supplemetary Section B, constitutes 
the fundamental principle behind classical shadow tomography12. For 
perfect laboratory state, that is, ρ = |ψ⟩ ⟨ψ|, this ensures that 𝔼𝔼𝔼ω] = 1. 
The empirical average ω̂ is close to unity when ρ is close to |ψ⟩ ⟨ψ| and 
sufficient samples T are collected. This analysis confirms that our 
protocol will successfully certify high-fidelity laboratory states.

However, the critical question remains whether the protocol be 
deceived into certifying low-fidelity states. Addressing this concern 
requires recognizing that 𝔼𝔼𝔼ω] = Tr [Lρ] for a specific observable L that 
can be constructed through queries to the target state’s algorithmic 
representation. Ideally, we want this observable to be the projector 
|ψ⟩ ⟨ψ| onto the target state |ψ⟩. Our analysis in Supplemetary Section 
C demonstrates that the actual observable L satisfies L |ψ⟩ = |ψ⟩ and 

⟨ψ⟂|| L ||ψ⟂⟩ ≤ 1 − 1
τ

 for any orthogonal state ||ψ⟂⟩, where τ ≥ 1 is a state- 
dependent parameter. This makes L an approximate projector onto 
the target state |ψ⟩. Consequently, we can differentiate between 
high-fidelity and low-fidelity laboratory states ρ by measuring T = 𝒪𝒪𝒪τ2) 
samples of ρ.

A key insight, proven in Supplemetary Section C, is that the observ-
able L shares identical eigenvalues with the normalized transition 
matrix P of a suitably constructed random walk (or Markov chain) 
on the Boolean hypercube {0, 1}n. The parameter 1/τ corresponds to 
the spectral gap of P, which is the difference between its largest and 
second-largest eigenvalues. This implies that τ is the relaxation time 
of this random walk. This connection is useful because it allows us to 
exploit the rich literature on Markov chain relaxation times to establish 
upper bounds on τ and, consequently, on our certification protocol’s 
sample complexity. We emphasize that this random walk serves purely 
as an analytical tool and is not implemented as part of the protocol 
itself.

The transition matrix P is determined by the computational basis 
measurement distribution π𝒪x) = |⟨x|ψ⟩|2 of the target state |ψ⟩. For a 
general state |ψ⟩ = ∑x∈{0,1}n √π𝒪x)eiϕ(x) |x⟩, the random walk transitions 
between vertices x, y ∈ {0, 1}n according to

P𝒪x, y) =

⎧⎪⎪
⎨⎪⎪
⎩

1
n

π( y)
π(x)+π( y)

x ∼ y,

1
n

∑
x′∶x′∼x

π(x)
π(x)+π(x′)

x = y,

0 otherwise ,

(5)

where adjacent vertices x ~ y differ in exactly one bit position. This 
construction ensures that the stationary distribution assigns probabil-
ity π(x) to vertex x. For the uniform distribution π𝒪x) = 1

2n
, this reduces 

to the standard lazy random walk on the Boolean hypercube, where 
each step either remains at the current vertex with probability 1/2 or 
moves to a uniformly chosen neighbour with probability 1/2.

By exploiting results on random walks, we can analyse our certifi-
cation protocol’s performance. We identify numerous quantum state 
families achieving τ ≤ poly(n), rendering our certification approach 
efficient. These include generic Haar-random states (Supplemetary 
Section D), structured entangled families such as quantum phase states 
(Supplemetary Section G), gapped ground states (Supplemetary Sec-
tion H) and GHZ-like states (Supplemetary Section I).

Applications
We stated in Theorem 2 that almost all quantum states drawn from 
the Haar measure can be certified using shadow overlaps, which can 

Post-measurement
state of qubit k

 

Querying amplitudes of
target state |Ψ �

Z-basis readings on 
qubits excluding k

Model Ψ 

Data acquisition phase

Measuring laboratory state ρ

Random 
X/Y/Z basis

Z-basis

Learning/certifying 
neural quantum states

x ∈ {0,1}n Ψ (x)

Benchmarking quantum devices

Query phase Applications

|0 �⊗n |Ψ �

Optimizing quantum circuits
Classical shadow of qubit k

ω is the fidelity of qubit k
Shadow overlap is E[ω]

Qubit k

Fig. 1 | Estimating the shadow overlap. The data collection phase: for each copy 
of the laboratory state ρ, a random qubit k is selected. All qubits except k are 
measured in the Z basis. Qubit k is measured in a random X, Y or Z basis to obtain 
its classical shadow. Query phase: by querying the amplitudes of the target state 

|ψ⟩ twice, the ideal post-measurement state ||ψk,z⟩ of qubit k is found. Using the 
classical shadow of qubit k from the laboratory state, its overlap ω with ||ψk,z⟩ is 
evaluated. Finally, the shadow overlap E[ω] is estimated by averaging ω across 
all copies.
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be reliably estimated with few single-qubit measurements. In what 
follows, we give an overview of various interesting applications of the 
shadow overlap formalism.

Neural network quantum state tomography
The development of quantum technologies increasingly relies on clas-
sical computational models capable of capturing complex quantum 
phenomena while remaining tractable for numerical analysis. Among 
the most promising approaches are machine learning representations 
that provide algorithmic access to quantum state amplitudes. These 
models enable efficient computation of amplitudes ψ𝒪x) ∈ ℂ for any 
computational basis element x ∈ {0, 1}n, up to a global phase.

Contemporary approaches include neural quantum states and 
tensor network decompositions, which have been extensively stud-
ied in recent literature1,4–11,42,43. Polynomial-size neural networks can 
efficiently evaluate quantum amplitudes ψ(x) for represented n-qubit 
states. Similarly, tensor networks with tractable contraction schemes, 
including matrix product states2 and tree tensor networks3, provide 
efficient amplitude computation of the represented n-qubit state.

Learning ML models of quantum states
Our certification scheme yields an algorithm for learning ML models 
of quantum states with rigorous sample complexity guarantees. This 
is achieved using learning by hypothesis selection, which can generally 
be applied to a set of models {Ψ1, …, ΨM} each describing an n-qubit 
state |ψi⟩, for i ∈ [M]. Our objective is to use the measurement data 
obtained from identical copies of a state ρ and learn a model Ψi among 
i ∈ [M] which achieves the highest overlap ⟨ψi|ρ |ψi⟩. This approach to 
learning is relevant in applications where we either naturally have a set 
of M hypotheses (for example, from different theories describing the 
physics of a quantum system) or where we can obtain such a discrete 
set by casting a covering net (or carrying out some form of 
coarse-graining) over a larger and more expressive family of models.

We show in Supplemetary Section J that, assuming the fast mixing 
condition for the set of models {Ψ1, ⋯ , ΨM}, we can use the shadow 
overlap to learn a model that achieves a high fidelity with the laboratory 
state ρ using 𝒪𝒪𝒪logM) copies of ρ. In Supplemetary Section J, we also 
give a concrete application of this scheme for learning a feedforward 
neural network representation of a quantum state. We show that the 
sample complexity of this problem scales as 𝒪𝒪 (nL3W3s2L) for a network 
of depth L, width W and spectral norm s that takes n-bit strings as input. 
In Supplemetary Section J.3, we discuss another application of this 
learning algorithm in the context of gapped ground states.

Training neural quantum states with shadow overlap
Although hypothesis selection provides a learning scheme with a rigor-
ous sample complexity, the run time of this algorithm scales linearly 
with the number of models M, rendering it inefficient for many appli-
cations where M grows exponentially with the number of qubits n. 
In practice, though, as shown in Fig. 2 and detailed in Supplemetary 
Section L.1, we can use the shadow overlap along with the stochastic 
gradient descent (SGD) to efficiently train and certify an ML model of 
a quantum state.

To this end, we consider training a neural network representation 
of an n-qubit state |ψ⟩ using a shadow-based log loss and the data 
acquired by single-qubit measurements in the shadow overlap proto-
col. Figure 2 shows an application of this scheme to learning highly 
entangled phase states

|ψ⟩ = 1
√2n

∑
x∈{0,1}n

eiϕ(x) |x⟩ (,6)

with random binary phases ϕ(x) ∈ {0, π} on n = 120 qubits. Such quan-
tum states are indistinguishable from states with exponentially large 
circuit complexity44,45, and exhibit volume-law scaling of entangle-
ment46. The findings reported in Fig. 2 indicate that, beyond a certain 

0 0.5 1.0 1.5 2.0 2.5
Neural network training steps (SGD) ×105

0.4

0.5

0.6

0.7

Lo
g 

lo
ss

Shadow-based log loss (training)

Shadow-based log loss (validation)

0

0.25

0.50

0.75

1.00

Estim
ated fidelity

Fidelity

Shadow overlap

0 20 40 60 80 100 120
Subsystem = { 1, 2, ..., i }

0

0.5

1.0

Es
tim

at
ed

 p
ur

ity

Ground truth Randomly Init. NQS Trained NQS (fidelity of 1.00)

a

b

Fig. 2 | Neural network quantum state tomography: training and certifying a 
neural quantum state with the shadow overlap. a, A dual-input neural network 
is trained to learn a quantum phase state as in equation (6) with random phases 
ϕ(x) on n = 120 qubits using single-qubit measurements. The neural network 
admits two inputs x0, x1 ∈ {0, 1}n, which differ only in one bit, and computes ⟨x0|ψ⟩

⟨x1|ψ⟩
 

as its output. Applying this neural network architecture n times allow us to 
compute the amplitude 〈x∣ψ〉 for a given x. The dual-input neural quantum states 
can be trained using a shadow-based log loss, leveraging data acquired by 
single-qubit measurements as prescribed in the shadow overlap protocol. 

A shadow-based loss function trains the model on 50,000 measurement 
data acquired in the shadow overlap estimation, which consist of tuples 
(x0, x1, ∣ϕ(x0) − ϕ(x1)∣), representing the phase difference between two adjacent 
strings x0 and x1. The log loss is minimized via SGD. The model is then certified 
using fidelity and shadow overlap on a separate data set of size 10,000. b, The 
trained neural quantum state is used to estimate the subsystem purity of the 
random phase state, exhibiting a high degree of entanglement compared with a 
randomly initialized neural quantum state (Randomly Init. NQS).
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training threshold, the model attains a fidelity very close to 1.00 with 
the target state. As explained next, this performance can also be certi-
fied using the shadow overlap, as an efficient alternative to the fidelity.

Certifying ML models
One drawback of machine learning models for quantum states is that 
their training usually relies on heuristic algorithms. The absence of 
performance guarantees highlights the need for certification proce-
dures capable of efficiently verifying the accuracy of the trained mod-
els. The result of Theorem 1 can be restated in terms of certifying the 
overlap between an n-qubit state |ψ⟩ and its trained ML model with a 
relaxation time τ. This is achieved using single-qubit Pauli measure-
ments performed independently on 𝒪𝒪𝒪τ2/ϵ2) copies of |ψ⟩ along with 
two queries to the trained ML model per |ψ⟩ copy.

Figure 2 shows a numerical implementation of this certification 
procedure for a dual-input neural network representation of a 120-qubit 
random phase state. After training the neural net with 50,000 meas-
urements using shadow-overlap-based stochastic gradient decent, 
we estimate and compare the shadow overlap of the resulting model 
with its fidelity. We observe that the predicted shadow overlap closely 
mirrors the fidelity, serving as an effective proxy.

Estimating sparse observables
The certified ML models of quantum states can be employed to statis-
tically estimate many properties of interest9,11 if in addition to query 

access, we assume the models are also equipped with sampling access: 
the ability to sample from the measurement distribution corresponding 
to ∣ψ(x)∣2 := ∣〈x∣ψ〉∣2. The sampling access can be obtained in various ways 
as follows: Markov chain sampling via running the random walk defined 
in equation (5) or the Metropolis–Hastings algorithm, measuring the 
certified state ρ in the computational basis, or using autoregressive 
methods to obtain direct sampling access47.

In Supplemetary Section K, we show how to apply a verified ML 
model of a quantum state with query and sampling access to estimate 
the expectation value of any sparse observable G, such as the energy 
of a local Hamiltonian, or highly non-local properties, such as Rényi 
entanglement entropies, up to an error ϵ with a number of samples 
that scales as T = 𝒪𝒪 (⟨ψ|G2 |ψ⟩ /ϵ2) . When no certified ML model is 
available, estimating certain non-linear observables, such as the sub-
system purity Tr𝒪ρ2

A), requires a number of samples that are exponen-
tial in the size of the subsystem A; for example, see ref. 48 for an 
exponential lower bound that applies to any single-copy measure-
ments, and ref. 12 for an upper bound via the classical shadow formal-
ism. In Supplemetary Section K, the same task can be conducted using 
a verified ML model with a sample complexity 𝒪𝒪 (1/ϵ2), independent 
of the system size.

In Fig. 2, we demonstrate this feature with a numerical experiment 
on the trained neural network representation of the random phase 
state in equation (6). The purity Tr𝒪ρ2

A) of the phase state is estimated 
for subsystems of size ∣A∣ ∈ {1, …, 120}, confirming that the state of the 
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Fig. 3 | Benchmarking with the shadow overlap. a–d, A comparison of the 
(normalized) shadow overlap, fidelity and XEB in benchmarking noisy quantum 
states under white noise (that is, global depolarizing noise), dephasing noise 
and coherent noise (realized as small Gaussian errors in the wavefunction), for a 
4-qubit (a) and a 20-qubit (b) Haar random state, along with a 4-qubit (c) and a 
20-qubit (d) random phase state of the form Uphase ⋅ ⊗n

i=1 |ψi⟩, where |ψi⟩ are 
single-qubit states with random real amplitudes and Uphase is diagonal with 

random complex phases. In this numerical experiment, the shadow overlap is 
normalized as detailed in Supplemetary Section F. Error bars indicate statistical 
measurement errors. Each independent run uses a sample size of N = 50, and 
the average and variance are computed over 500 independent runs. XEB tracks 
the fidelity well under white noise but fails under dephasing and coherent 
noise. In contrast, shadow overlap performs robustly across all regimes with 
lower variance.
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subsystems is close to the maximally mixed state as guaranteed by the 
rigorous proofs.

Benchmarking quantum devices
Certifying the fidelity between a state ρ prepared using a quantum 
device and a known quantum state |ψ⟩ offers a rigorous approach for 
benchmarking quantum machines. However, the exponential resources 
and the high level of control needed for estimating fidelity limit the 
applicability of this approach in practice. To address these challenges, 
a number of studies have proposed and deployed other statistical 
quantities that act as a form of proxy for the fidelity in the situations 
often encountered practically38,39,49,50. One such proxy is the XEB, a 
prominent metric employed in the evaluation of quantum supremacy 
experiments with local random quantum circuits38,49. Given an n-qubit 
target state |ψ⟩ = ∑x∈{0,1}n √π𝒪x)eiϕ(x) |x⟩  and the laboratory state ρ, 

their XEB score is defined by

XEB =
2nEx∼⟨x|ρ|x⟩π𝒪x) − 1
2nEx∼π(x)π𝒪x) − 1 , (7)

where Ex~π(x) and Ex∼⟨x|ρ|x⟩  denote the expectation when x is sampled 
according to measurement distribution π(x) and ⟨x|ρ |x⟩, respectively. 
The XEB score is designed to ensure that XEB matches the fidelity when 
the laboratory state ρ = 𝒪1 − p) |ψ⟩ ⟨ψ| + p I

2n
 equals the target state 

subject to white noise with parameter p; see refs. 38,49,51 and Sup-
plemetary Section A. From equation (7), we can also observe that XEB 
entirely ignores the phase information eiϕ(x) in the target state |ψ⟩. Con-
sequently, it is not a reliable proxy for the fidelity under various phys-
ically relevant noise models, such as dephasing or coherent noise.

In Fig. 3, we compare the performance of shadow overlap, fidel-
ity and XEB. We observe that, when the laboratory state ρ is subject 
to white noise (first row), XEB performs well for Haar random states 
but exhibits much larger variance for random phase states. However, 
under dephasing noise (second row), XEB incorrectly reports near 
perfect fidelity, even when the actual fidelity is far from 1. In the pres-
ence of coherent noise (third row), XEB can also deviate substantially 

from fidelity. In contrast, the shadow overlap tracks the fidelity quite 
well across different noise regimes and system sizes for white noise, 
dephasing noise and coherent noise. Refer to Supplemetary Sections 
A, F and L.2 for a more detailed discussion.

Optimizing quantum circuits for state preparation
Many variational quantum algorithms employ the fidelity between 
two quantum states as their cost function. However, these 
fidelity-based cost functions suffer from exponentially vanishing 
gradients, a phenomenon known as barren plateaus52–55, and require 
a high sample complexity for statistical estimation. Shadow overlap 
E[ω] offers an alternative to the fidelity ⟨ψ|ρ |ψ⟩ in such algorithms. 
Beyond demanding a substantially lower sample complexity, the 
shadow overlap may provide an improved optimization landscape 
with non-vanishing gradients. Specifically, when the target state exhib-
its no global correlations and its probability amplitudes are well dis-
tributed across the Boolean hypercube {0, 1}n, the shadow overlap 
behaves similarly to the Hamming distance. This correspondence 
becomes exact for bit strings in the X-basis, where the Hamming dis-
tance and shadow overlap are identical.

Consider the illustrative case of |ψ⟩ = |+⟩⊗n . As detailed in the 
Methods, shadow overlap is the expectation value Tr𝒪Lρ) of the observ-
able L = 1

n
∑n

i=1 |+⟩ ⟨+|i ⊗ �∖i. This observable is a sum of local terms, 
offering favourable optimization features compared with the non-local 
observable |+⟩⟨+|⊗n used in fidelity estimation. A related approach in 
quantum machine learning53–56, known as local fidelity, employs the 
observable 1

n
∑n

i=1 U𝒪|0⟩ ⟨0|i ⊗ �∖i)U† for a target state |ψ⟩ = U |0n⟩. Both 
local fidelity and shadow overlap offer improved optimization land-
scapes. However, local fidelity is experimentally challenging. While it 
can be efficiently estimated using classical shadows12 for 
low-entanglement states |ψ⟩, the general case is highly inefficient. For 
|ψ⟩ = U |0n⟩ with deep circuit U, local fidelity is a sum of highly non-local 
terms: U ( |0⟩ ⟨0|i ⊗ �∖i )U†. Consequently, measuring local fidelity 
requires either implementing a deep circuit U† or performing an expo-
nential number of single-qubit measurements (see Supplemetary 
Section A for further details). In contrast, shadow overlap maintains 
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Fig. 4 | Optimizing quantum circuits for state preparation. Training a 
low-depth quantum circuit consisting of Hadamard, controlled-Z and T gates to 
prepare a target state |ψ⟩ given as a matrix product state. The target state 
corresponds to the output of a one-dimensional IQP circuit57 infused with 
random T gates. The training is first performed by variationally optimizing for 
maximum shadow overlap. We then assess this method’s performance against 
fidelity-based training. Changes in both fidelity and shadow overlap are 
monitored across optimization steps. a, We see that, akin to the linear decrease in 
Hamming distance between two binary strings as suitable bits are flipped, under 
shadow-overlap-based training the deviation of the shadow overlap from 1 

decreases linearly as suitable gates are added to the circuit. This contrasts with 
the fidelity, which fails to exhibit a steady, gradual increase as the number of state 
construction steps increases. b, Because the optimization landscape of fidelity 
has a barren plateau, training with fidelity fails to find a high-fidelity state-
preparation circuit. In contrast, training with shadow overlap successfully finds a 
high-fidelity circuit. The improvement in optimization landscape is comparable 
to that achieved by local fidelity53–56, but with a key advantage, namely, while local 
fidelity requires either deep quantum circuits or exponentially many single-qubit 
measurements for general target states |ψ⟩, shadow overlap needs only 
polynomially many single-qubit measurements.
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high measurement efficiency, requiring only a polynomial number of 
single-qubit measurements.

In a numerical experiment presented in Fig. 4 and discussed in 
Supplemetary Section L.3, we investigate this feature of the shadow 
overlap in the context of training quantum circuits to optimally prepare 
a target state, corresponding to the output of a one-dimensional IQP 
circuit57 infused with random T gates. When employing n = 50 qubits, 
fidelity-based training encounters barren plateaus, whereas shadow 
overlap-based training successfully prepares the target state with a 
fidelity very close to 1.

Outlook
Our certification protocol based on the shadow overlap demonstrates 
that almost all quantum states can be certified using polynomially many 
independent single-qubit Pauli measurements. Further extending the 
reach of our certification protocol raises many interesting open questions.

Quantum states with fast relaxation times
What families of quantum states provably admit a poly(n) relaxation 
time with respect to the Markov chain (5) introduced in our analysis? 
We show that Haar random quantum states exhibits a relaxation time 
bounded by τ ≤ O(n2). Can we show that states prepared with (random) 
quantum circuits of arbitrary depth satisfy a relaxation time τ ≤ poly(n)?

Certifying any states with few single-qubit measurements
While our protocol successfully certifies almost all states, the ultimate 
goal would be universal certification of any state using only poly(n) 
single-qubit measurements. A recent follow-up work58 demonstrates 
that adaptive single-qubit measurements with mid-circuit classical 
feedforward can indeed certify arbitrary target states. However, such 
adaptive protocols require sophisticated experimental control and 
are equivalent to universal quantum computation59. Furthermore, 
their result assumes a more powerful form of algorithmic access to the 
target state than in our setting, namely, the ability to compute ampli-
tudes in any product basis rather than just the computational basis. 
This stronger assumption limits the applicability of their protocol to 
some tasks discussed in ‘Applications’ section. This raises a refined 
open question, namely: can we achieve universal state certification 
using only poly(n) non-adaptive single-qubit measurements without 
mid-circuit classical feedforward?

Mixed states
Can a similar certification protocol be developed when the target state 
belongs to a certain family of mixed quantum states? In particular, can 
almost all approximately low-rank mixed states be certified with few 
single-qubit measurements?

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Our certification protocol achieves high efficiency by exploiting a 
deep connection between quantum state fidelity and Markov chain 
mixing times. We present the complete framework underlying 
our results, showing how the shadow overlap naturally serves as a 
proxy for fidelity and how its performance is linked to the mixing 
properties of an associated Markov chain, leading to the proof of 
Theorem 1.

Certification protocol
We analyse the performance of a generalized version of the shadow 
overlap protocol introduced in the main text. In this version detailed 
below, we choose m qubits uniformly at random and measure each in 
a randomized basis. This section includes the proof of Theorem 1 of 
the main text, corresponding to the m = 1 case, as well as the equivalent 
statement for the general level-m protocol. Given an n-qubit target 
state |ψ⟩ specified by a model Ψ, and an arbitrary laboratory state ρ, the 
level-m protocol proceeds as follows:

	(1)	 Among the total n qubits of ρ, choose a uniformly random sub-
set of size at most m qubits. Denote these qubits by k = {k1, …, kr} 
where r ≤ m is the size of the subset.

	(2)	 Perform single-qubit Z-basis measurements on all but qubits k1, 
…, kr of ρ. Denote the measurement outcomes collectively by 
zk ∈ {0, 1}n−r.

	(3)	 For each qubit k1, …, kr, choose an X, Y or Z-basis measurement 
uniformly at random and measure that qubit of ρ. Denote the 
post-measurement state of the qubits k1, …, kr by |s1⟩ ,… , |sr⟩, 
respectively. Compute the classical shadow

σ = 𝒪3 |s1⟩ ⟨s1| − �) ⊗ 𝒪3 |s2⟩ ⟨s2| − �) ⊗⋯⊗ 𝒪3 |sr⟩ ⟨sr| − �) . (8)

	(4)	 Query the model Ψ for all choices of r-bit strings ℓ1 and ℓ2 that 
differ exactly in r bits (that is, ℓ1, ℓ2 ∈ {0, 1}r and dist(ℓ1, ℓ2) = r) to 
obtain the normalized states

||Ψℓ1 ,ℓ2
zk ⟩ ∶=

Ψ (z(ℓ1)k ) |ℓ1⟩ + Ψ (z(ℓ2)k ) |ℓ2⟩

√||Ψ (z(ℓ1)k )||
2
+ ||Ψ (z(ℓ2)k )||

2
. (9)

�Here the n-bit string z(ℓ)k  matches ℓ ∈ {0, 1}r on bits k1, …, kr and 
equals zk ∈ {0, 1}n−r on the remaining n − r bits.

	(5)	 Compute the overlap

ω ∶= Tr𝒪Lzkσ)with Lzk ∶= ∑
ℓ1, ℓ2 ∈ {0, 1}r

dist𝒪ℓ1, ℓ2) = r

||Ψℓ1 ,ℓ2
zk ⟩ ⟨Ψℓ1 ,ℓ2

zk
|| . (10)

	(6)	 Repeat steps 1–5 for T times to obtain overlaps ω1, …, ωT. Report 
the estimated shadow overlap given by ω̂ ∶= 1

T
∑T

t=1 ωt.
	(7)	 If the estimated shadow overlap ω̂ ≥ 1 − 3ϵ

4τ
, the output is 

certified. Otherwise, the output failed.

Certification efficiency and mixing time
Fix a level m for the certification protocol. The measurement distribu-
tion π(x) = ∣〈x∣ψ〉∣2 is a distribution on a graph G = (V, E) where the ver-
tices V = {0, 1}n are n-bit strings, and an edge e = (x, y) exists between 
vertices x and y when they differ in k ∈ {1, …, m} bits. Let 𝒮𝒮 ∶= {x ∶ π𝒪x) > 0} 
denote the support of π(x). Let N = ∑m

k=1𝒪
n
k )

 be number of neighbours 

of each vertex. We define a random walk or a Markov chain on this 
graph. The transition matrix P = ∑x∈{0,1}n P𝒪x, y) |x⟩ ⟨ y|  of this walk is 
defined by

P𝒪x, y) =

⎧⎪⎪
⎨⎪⎪
⎩

1
N

π( y)
π(x)+π( y)

𝒪x, y) ∈ E,

1
N

∑
x′∶(x′ ,x)∈E

π(x)
π(x)+π(x′)

x = y,

0 otherwise .

(11)

In our application, it is more convenient to consider a normalized 
version of the transition matrix P  given by S

1
2 PS−

1
2  where 

S−
1
2 = ∑x∈𝒮𝒮

1
√π(x)

|x⟩ ⟨x|. We claim that the shadow overlap estimated in 
level m of our protocol equals the expected value of an observable 
directly linked to the normalized transition matrix.

Proposition 3. Suppose the level-m certification protocol is performed 
on copies of the state ρ and a model Ψ of the quantum state |ψ⟩ =
∑x∈{0,1}n √π𝒪x)eiϕ(x) |x⟩. Define the ‘phase matrix’ by F =∑x∈{0,1}n e

iϕ(x) |x⟩ ⟨x| 
and let L be the Hermitian operator given by

L = FS
1
2 PS−

1
2 F †. (12)

We have L |ψ⟩ = |ψ⟩ and Tr𝒪Lρ) = E𝔼ω], where E[ω] denotes the expected 
output of the certification protocol.

Proof. The entries of the observable L for any x ∈ 𝒮𝒮 are given by

⟨x| L | y⟩ =

⎧⎪⎪
⎨⎪⎪
⎩

1
N
√π(x)π( y)
π(x)+π( y)

ei(ϕ(x)−ϕ( y)) 𝒪x, y) ∈ E,

1
N

∑
x′∶(x′ ,x)∈E

π(x)
π(x)+π(x′)

x = y,

0 otherwise .

(13)

For x ∈ 𝒮𝒮, we have

⟨x| L |ψ⟩ = ⟨x| L |x⟩ ⟨x|ψ⟩ + ∑
y≠x

⟨x| L | y⟩ ⟨ y|ψ⟩

= 1
N

∑
y∶( y,x)∈E

π(x)
π(x)+π( y)

√π𝒪x)eiϕ(x)

+ 1
N

∑
y∶( y,x)∈E

√π(x)π( y)
π(x)+π( y)

ei(ϕ(x)−ϕ( y))√π𝒪 y)eiϕ( y)

= 1
N

∑
y∶( y,x)∈E

( π(x)
π(x)+π( y)

+ π( y)
π(x)+π( y)

)√π𝒪x)eiϕ(x)

= √π𝒪x)eiϕ(x).

(14)

This shows that L |ψ⟩ = |ψ⟩. Next, we prove that Tr𝒪Lρ) = E𝔼ω]. Consider 
subsets of qubits with size r ≤ m. There are N = ∑m

k=1𝒪
n
k )

 choices for the 

location of these qubits. For any r, we enumerate the chosen qubits by 
k1, …, kr and collectively denote them by k = {k1, …, kr}. For a fixed k, the 
set {zk ∈ {0, 1}n−r} denotes all the possible bit strings on the remaining 
n − r bits. Direct inspection reveals that the observable L corresponding 
to the model Ψ can be expressed as

L = 1
N ∑

r∈[m]
∑

k={k1 ,…,kr}
∑

zk∈{0,1}
n−r
|zk⟩ ⟨zk| ⊗ Lzk , (15)

where Lzk  is an operator acting on r qubits {k1, …, kr} and is given by

Lzk ∶= ∑
ℓ1, ℓ2 ∈ {0, 1}r

dist𝒪ℓ1, ℓ2) = r

||Ψℓ1 ,ℓ2
zk ⟩ ⟨Ψℓ1 ,ℓ2

zk
|| with ||Ψℓ1 ,ℓ2

zk ⟩

∶=
Ψ(z(ℓ1)k )|ℓ1⟩+Ψ(z(ℓ2)k )|ℓ2⟩

√|Ψ(z(ℓ1)k )|2+|||Ψ(z(ℓ2)k )|||
2
.

(16)
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In this expression, the binary string z(ℓ)k  equals ℓ ∈ {0, 1}r on bits k1, …, kr 
and equals zk ∈ {0, 1}n−r on the remaining n − r bits. Let σ denote the clas-
sical shadow obtained after performing randomized Pauli measure-
ments on the post-measurement state of qubits r. That is, if the r  
single Pauli measurements return states |s1⟩ ,… , |sr⟩ , we set σ =
𝒪3 |s1⟩ ⟨s1| − �) ⊗ 𝒪3 |s2⟩ ⟨s2| − �) ⊗⋯⊗ 𝒪3 |sr⟩ ⟨sr| − �) . It follows from the 
discussion in Supplemetary Section B that Eshadows𝔼σ] =

⟨zk |ρ|zk⟩
Tr(⟨zk |ρ|zk⟩)

, where 

the expectation is over Pauli measurements on qubits k. Using this, we 
can expand Tr𝔼Lρ] as follows:

Tr𝔼Lρ] = 1
N

∑
r ∈ 𝔼m]

k = {k1,… , kr}

∑
zk∈{0,1}

n−r
Tr𝒪⟨zk|ρ |zk⟩)Tr (Lzk

⟨zk |ρ|zk⟩
Tr(⟨zk |ρ|zk⟩)

)

= Ek,zkTr (Lzk
⟨zk |ρ|zk⟩

Tr(⟨zk |ρ|zk⟩)
)

= Ek,zkTr (Lzk Eshadows𝔼σ])

= Ek,zk Eshadows𝔼Tr (Lzkσ)] = E𝔼ω].

In the last expression, the expectation is with respect to the location of 
the Pauli Z measurements, their outcomes, as well as the randomized 
measurements on the remaining qubits.

Shadow overlap as a proxy for fidelity
When we first average over the classical shadows, the shadow overlap 
E[ω] is equal to the average overlap between the postselected state  
on ρ and the postselected state on the target state |ψ⟩. Hence 
0 ≤ E𝔼ω] = Tr𝒪Lρ) ≤ 1 for any state ρ. This implies that 0 ≼ L ≼ I.

Theorem 4. Let λ1 = 1 − 1
τ
 be the second largest eigenvalue of the transi-

tion matrix P defined with respect to the measurement distribution π(x) 
of the state |ψ⟩. The shadow overlap satisfies

if E 𝔼ω] ≥ 1 − ϵ thenwehave ⟨ψ|ρ |ψ⟩ ≥ 1 − τϵ; (17)

if ⟨ψ|ρ |ψ⟩ ≥ 1 − ϵ thenwehave E 𝔼ω] ≥ 1 − ϵ. (18)

This implies that we can check if fidelity is close to one by checking if 
shadow overlap is close to one.

Proof. We first study the spectrum of the observable L. From the previ-
ous theorem and the fact that 0 ≼ L ≼ I, the eigenvalues of L are given 
by 1 = λ0 ≥ λ1 ≥ λ2 ≥ ⋯ ≥ 0. The two operators P and L are related by a 
similarity transformation. Hence, they have the same set of eigenval-
ues. Let ||λi⟩ denote the eigenstate of observable L corresponding to 
the eigenvalue λi. We claim that the top eigenstate ||λ0⟩ of the operator 
L is the quantum state |ψ⟩. This can be seen by the direct calculation or 
by noting that the measurement distribution π(x) is the unique station-
ary distribution of P. Hence, we have P |π⟩ = |π⟩ , where |π⟩ =
∑x∈{0,1}n √π𝒪x) |x⟩ . From this and the fact that |π⟩ = F† |ψ⟩ , we have 
L |ψ⟩ = |ψ⟩, as claimed.

Now we prove the implication stated in equation (17). From Propo-
sition 3, we know that E𝔼ω] = Tr𝔼Lρ]. Assuming E[ω] ≥ 1 − ϵ, we have

1 − ϵ ≤ E𝔼ω] = Tr𝔼Lρ]

= ⟨ψ|ρ |ψ⟩ + ∑
i≥1

λi ⟨λi||ρ ||λi⟩ using ||λ0⟩ = |ψ⟩

≤ ⟨ψ|ρ |ψ⟩ + λ1 ∑
i≥1
⟨λi||ρ ||λi⟩ definitionof λ1

≤ ⟨ψ|ρ |ψ⟩ + λ1𝒪1 − ⟨ψ|ρ |ψ⟩) sinceTr𝒪ρ) = 1.

By rearranging the two sides of the inequality, we arrive at the bound 
⟨ψ|ρ |ψ⟩ ≥ 1 − ϵ

1−λ1
= 1 − τϵ. We next prove the implication stated in (18).

E𝔼ω] = Tr𝔼Lρ]

= ⟨ψ|ρ |ψ⟩ + ∑i≥1 λi ⟨λi||ρ ||λi⟩ using ||λ0⟩ = |ψ⟩

≥ ⟨ψ|ρ |ψ⟩ ≥ 1 − ϵ.

This concludes the proof of this theorem.

Sample complexity
As we show in Supplemetary Section C, using equations (18) and (17), 
we can certify the overlap between the target state |ψ⟩  and an 
unknown state ρ using T = 22m+4 ⋅ τ2

ϵ2
⋅ log𝒪 2

δ
) copies of the state ρ with 

probability at least 1 − δ. Moreover, we can improve the dependency 
of the sample complexity on τ/ϵ for the level m = 1 protocol by replac-
ing randomized Pauli measurements with measurement in the basis 
{||Ψk,z⟩ ⟨Ψk,z|| ,� − ||Ψk,z⟩ ⟨Ψk,z||} . In this setting, we can show that 
T = 𝒪𝒪𝒪 τ

ϵ
⋅ log( 1

δ
)) samples of the unknown state ρ are sufficient for the 

certification protocol to succeed with probability at least 1 − δ.

Data availability
The data used to generate all figures are openly available via 
Zenodo60. In the Zenodo repository, the data associated with the 
three main numerical experiments can be found in text files in 
neural-quantum-state/, pickle files in benchmarking-vs-XEB/ 
and pickle files in benchmarking-vs-shadow/.

Code availability
The code for conducting the numerical experiments and generat-
ing the data in this work is available via Zenodo at https://zenodo.
org/records/15873712 (ref. 60). The current development version 
is available via GitHub at https://github.com/hsinyuan-huang/
certify-quantum-states.
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