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QUANTUM PROCESSING
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Recent advances in quantum technologies have demonstrated 
that quantum systems can outperform classical ones in specific 
tasks, a concept known as quantum advantage. Although 
previous efforts have focused on computational speedups, a 
definitive and provable quantum advantage that is unattainable 
by any classical system has remained elusive. In this work, we 
demonstrate a provable photonic quantum advantage by 
implementing a quantum-enhanced protocol for learning a 
high-dimensional physical process. Using imperfect Einstein–
Podolsky–Rosen entanglement, we achieve a sample 
complexity reduction of 11.8 orders of magnitude compared to 
classical methods without entanglement. These results show 
that large-scale, provable quantum advantage is achievable with 
current photonic technology and represent a key step toward 
practical quantum-enhanced learning protocols in quantum 
metrology and machine learning.

Learning the properties of a physical system by performing measure-
ments on it is at the foundation of natural sciences. In conventional 
settings, this typically involves collecting a large set of independent 
measurements of certain variables of the system and applying statisti-
cal methods on a classical computer to estimate their underlying dis-
tribution, from which the properties of the system can be inferred. 
However, in quantum systems, the learning task is hindered by the 
constraints of quantum physics, such as the inherent quantum noise 
associated with measurements, encapsulated by Heisenberg’s uncer-
tainty principle. Consequently, the sample complexity—the number of 
experiments required to learn certain properties of quantum systems—
can scale exponentially with the system size, rendering some learning 
tasks practically infeasible using classical, conventional learning ap-
proaches (1, 2).

As an alternative to the conventional approach using independent 
probe states and a classical processor for data analysis, quantum 
learning strategies have been proposed (3–5, 6, 7–10). In such ap-
proaches, the probe states are not measured independently but in-
stead undergo a collective quantum algorithmic measurement before 
data analysis is conducted. By leveraging quantum coherence of the 
probe states and collective measurements, it has been shown that, 
for certain finite-dimensional quantum systems, the sample com-
plexity can be substantially reduced (3, 9). Building on these ideas, 
quantum advantage in learning was first demonstrated on a 40-qubit 

superconducting electronic platform (11), where a learning task was 
accomplished using ~105 times fewer samples than conventional 
methods. Another recent experimental exploration in this direction 
using superconducting qubits with error mitigation is given in (10). 
Given the system size limit for superconducting systems and the 
challenges in capturing and transducing unknown quantum states 
into superconducting qubits, it is particularly intriguing to address 
how a scalable quantum learning advantage can be achieved in more 
practical scenarios.

In our work, we advance the frontier of quantum learning by dem-
onstrating an unprecedented quantum advantage, achieving orders-
of-magnitude improvement on a scalable continuous-variable (CV) 
photonic platform. Using imperfect Einstein–Podolsky–Rosen (EPR) 
entangled states of light and a joint CV measurement approach, we 
learn the amplitude and phase distributions of a multimode displace-
ment process with 1011 times fewer samples than required by an 
approach without entanglement. Furthermore, our photonic plat-
form enables a considerable quantum advantage in distinguishing 
two families of processes. Our implementation, capable of learning 
an infinite-dimensional joint displacement process spanning more 
than 100 modes, tackles problems whose complexity substantially 
surpasses that of the previous superconducting qubit-based demon-
stration (11). The photonic CV platform (12) has been at the forefront 
in advancing quantum technologies—from boson sampling (13, 14) 
to quantum communication (15–17), computation (18–20), and sens-
ing (21–23). This work demonstrates how photonic systems can be 
further leveraged to enhance our ability to learn about physical sys-
tems. Moreover, although photonic systems have previously demon-
strated their potential in various areas of quantum information, a 
definitive quantum advantage in such systems has remained elusive 
(24). Our achievement thus represents an important milestone in 
both quantum learning and the broader field of quantum informa-
tion science.

Context
The task of quantum learning proceeds as follows: The experimenter 
aims to learn a specific property of a quantum system, such as the 
probability distribution of a quantum state or the noise characteristics 
of a particular quantum device. The experimenter probes the device 
N  times, yielding N  data samples (Fig. 1A), from which the target 
property or probability distribution is reconstructed with a certain 
precision or classified with a specified confidence.

In this work, we focus on the task of learning the properties of ran-
dom n-mode phase-space displacement processes, which model the 
physical process of random amplitude and phase noise in bosonic chan-
nels. These channels are of particular interest because any CV noise 
channel can be tailored into a random displacement channel by twirling 
with displacement operators, similar to Pauli twirling in discrete-variable 
(DV) systems (25). Moreover, learning the properties of multi-time dis-
placement processes has broad applications including gravitational-
wave detection (26, 27), Raman spectroscopy (28, 29), dark-matter 
searches (30, 31), and microscopic force sensing (32).

We learn the dynamical displacement process, labeled Λ, by probing 
it with quantum states of light, followed by measurements that extract 
information about the probability distribution p(α) of the n-mode dis-
placement process, where α is the n-dimensional complex-valued vector 
describing the phase-space displacement (see supplementary materials 
section 2.1 for the formal definition of the displacement process). To 
achieve the highest confidence in detecting extremely small phase-
space displacements and their correlations, we need to reconstruct the 
characteristic function λ(β)—the Fourier conjugate of p(α) defined on 
the dual space, for large |β|2. These parts of λ(β) encode the fine struc-
ture of the displacement channel in its high-frequency components. It 
was proved that the conventional learning is not effective for this task: 
In a previous work by some of us (8), we proved that learning λ(β) to 
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a fixed accuracy within a hyperball of squared 
radius |β|2 ∝ n requires a number of samples 
scaling exponentially in the number of modes n. 
Here, we extend this result, showing (see supple-
mentary material, Theorem 3) that this classical 
complexity lower bound persists for multi-time 
processes and adaptive measurements. The 
bound holds for any choice of probe state as long 
as it is not entangled with an external quan-
tum memory.

Quantum-enhanced learning
We use entanglement to overcome this limita-
tion on learning a random displacement pro-
cess. Our quantum-enhanced learning scheme 
is illustrated in Fig. 1C. Each probe mode in the 
probing state is entangled with a corresponding 
auxiliary memory mode, forming EPR entan-
gled (or two-mode squeezed) states of a certain 
squeezing level. The learning is performed by 
sending probe modes through the displace-
ment process and then performing pairwise CV 
Bell measurements with memory modes. These 
Bell measurements reveal correlations between 
amplitude and phase quadratures with a phase-
space resolution determined by the amount of 
entanglement, bypassing the limitation im-
posed by the uncertainty principle of individ-
ual measurements. In supplementary materials 
section 2.2, we describe the method for esti-
mating the characteristic function from the 
measured samples.

We realize the quantum-enhanced learning 
protocol in a CV optical setup, as illustrated 
in Fig. 1D, with a detailed description provided 
in supplementary materials section 1. The two-
mode squeezed vacuum states, comprising the 
probe and memory modes, are generated by 
interfering the outputs of two optical paramet-
ric oscillators (OPOs). The displacement pro-
cess is implemented by mixing a weak coherent 
state into the probe modes via an unbalanced 
beam splitter (see Fig. 1E). To extract the dis-
placement information, we perform Bell mea-
surements by interfering the probe and 
memory modes and using homodyne detection 
to measure the amplitude and phase quadra-
tures of the resulting output signals. Our OPOs 
achieve up to 68% reduction of noise power 
during Bell measurements, enabling high pre-
cision in detecting the effects of the process.

Process reconstruction
We demonstrate the quantum enhancement of 
the learning task by reconstructing the charac-
teristic function λ(β) of a class of three-peak dis-
placement processes, defined in supplementary 
materials, Definition 4, using Bell measurement 
outcomes. We denote the reconstructed charac-
teristic function as λ̃(β). For a fixed squeezing 
parameter r, achieving a given reconstruction 
accuracy requires N ∼ exp(2e−2r |β|2) samples, 
which grows exponentially with |β|2. When the 
number of samples N is insufficient, the recon-
structed characteristic function λ̃(β) can diverge 
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Fig. 1. Quantum entanglement-enhanced learning with photons. (A) Conventional learning of a channel. A 
multimode probe state is sent through a channel, Λ, followed by a measurement of the probe state to extract the 
information about the channel. (B) Conventional learning of a multi-time physical process (also denoted as Λ), in 
which the measurement settings are allowed to be adaptive within a sample. (C) Quantum entanglement–enhanced 
learning of a multi-time process. The probe state is entangled with an external memory state. The joint measurement 
of both states makes overcoming the classical complexity limit possible. (D) Implementation of quantum learning 
with squeezed light. Two-mode squeezing is generated using two optical parametric oscillators (OPOs). The two 
spatial modes are temporally multiplexed and used as the probe and memory state, respectively. A Bell measurement 
between the corresponding temporal modes extracts the information. (E) We realize the displacement process by 
mixing a modulated coherent state into the probe. IM (PM) intensity (phase) modulator.
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Fig. 2. Reconstruction of a physical process. (A) Experimentally reconstructed characteristic function λ̃(β)  
of an n = 16-mode three-peak process (defined in supplementary materials, Definition 4) with fixed parameters 
using entanglement-free strategies, compared with the true characteristic function λ(β). The lines (shadings)  
show the average outcome (1σ standard deviation) of 100 runs of reconstruction using different numbers of 
samples. (B) Same as (A), but using probe states with different amounts of entanglement. Here the number of 
modes is n = 30, and we always use 105 samples. (C) Required number of samples versus n to ϵ-close reconstruct 
λ(β) of the three-peak process along the β0 direction, with ϵ = 0.24 and success probability 1 − δ = 2∕3. The points 
are determined from experimental results, and the 1σ standard deviation error bars are smaller than the data 
points. Each solid line is a log-linear fit estimating the sample complexity that uses the indicated amount of 
squeezing. The gray dashed line is the sample complexity lower bound that applies to any entanglement-free 
strategy that can learn all processes in a large family, which includes the process that we studied. (D) Probability of 
achieving an ϵ-close reconstruction of the −4.78-dB, 30-mode characteristic function for various directions in the 
dual space. The shading highlights the proximity to the displacement direction β0. Each probability is computed 
using N = 1472 samples—the same as required for an ϵ-close reconstruction in (C). The dashed line indicates the 
target probability of 1 − δ.
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at large |β|2. To visualize this divergence behavior, we plot the recon-
structed characteristic function along a slice β0 = b (1, 1, … , 1), b ∈ [0, 0.5]  
in the high-dimensional dual space in Fig. 2A: Without squeezing (r = 0), 
the 16-mode characteristic function reconstructed from 200 samples di-
verges rapidly and fails to capture the ground truth’s peak at b = 0.3. 
Furthermore, extending the radius |β| of the reconstructable hyperball 
requires a substantial increase in sample complexity: ∼105 samples 
are needed to reveal the peak at b = 0.3.

The introduction of entanglement through two-mode squeezing (r > 0) 
markedly reduces this sample complexity. As shown in Fig. 2B, when the 
number of modes increases to 30, reconstruction without entanglement 
(r = 0) fails even with 105 samples, requiring an impractically large num-
ber of experiments. However, with moderate entanglement, faithful re-
construction becomes achievable with the same number of samples. To 
systematically investigate the effect of entanglement on sample complex-
ity across different numbers of modes, we implement various n-mode 
displacement processes using three distinct squeezing levels: 0 dB, 
−2.26 dB, and −4.78 dB. We characterize the reconstruction performance 
using (ϵ, δ)-complexity: the number of samples required to reconstruct 
λ(β) with precision ϵ, such that ||λ̃(β)−λ(β)|| < ϵ for all �β� ≤ 0.3

√
n, with 

success probability 1 − δ. Further details of the process reconstruction 
experiment are provided in supplementary materials section 4.

As shown in Fig. 2C, entanglement in the form of two-mode squeez-
ing significantly reduces the sample complexity, leading to substantial 
quantum advantage as the number of modes increases. For n = 100, 
the sample complexity with the strongest squeezing (−4.78 dB) re-
mains about 107. By contrast, from an exponential fit of low-mode num-
ber data, we estimate that the entanglement-free scheme using vacuum 
probe would require a sample complexity as high as 7.3 × 1018, or more 
than 20 million years for acquiring all the data if 
the samples are generated at the same rate (1 
MHz per mode) as in our experiment. This rep-
resents an empirical improvement of 11.8 orders 
of magnitude. Although we used a specific process 
as an example, we believe the scaling of quantum 
learning advantage also applies to many other 
time-correlated displacement processes.

Further, in Fig. 2D, we confirm that the success 
probability of reconstructing λ(β) is the lowest 
along directions β that are close to β0, i.e., in the di
rection of the distribution’s high-frequency peaks. 
Therefore, the sample complexity in Fig. 2C is a faith
ful estimation of the true complexity for learning 
this channel.

Provable, scalable quantum advantage
Also shown in Fig. 2C is a lower bound on the sam
ple complexity of entanglement-free learning 
schemes, derived in supplementary materials sec-
tion 2.3. Compared to this bound, the entanglement-
enhanced reconstruction of the 100-mode process 
uses more than five orders of magnitude fewer 
samples. However, the sample complexity lower 
bound applies to entanglement-free schemes 
that can learn the characteristic function λ(β) for 
any random displacement process in a large fam-
ily and all values of β in a specified bounded range, 
whereas our experiment learns the characteris-
tic function for processes chosen from a smaller 
family and more restricted values of β. Therefore, 
the above improved process reconstruction does 
not demonstrate a provable quantum advantage.

To establish a provable quantum advantage, we 
consider the task of identifying specific features 
of an unknown process. Specifically, we design 

a hypothesis testing game (see Fig. 3A) in which a dealer prepares 
several n-mode displacement processes Λk. Each process may or may 
not exhibit a feature—specifically, two peaks at the locations ±γk in its 
characteristic function. The processes with and without the feature are 
grouped into three-peak and Gaussian families, respectively (see supple-
mentary materials, Definitions 4 and 5). A challenger is allowed to imple-
ment each process N times. After all the measurements are finished, the 
dealer reveals γk and the challenger is asked to identify the family that 
the process belongs to. A challenger using the quantum strategy records 
the Bell measurement outcomes and computes the estimator λ̃(β) at 
β = γk once the value is announced. They then compare the value of λ̃(β) 
with a threshold λ0 to classify the process. If λ̃(β) > λ0 is observed, they 
will guess the process as three-peak type, and otherwise as Gaussian. 
Crucially, the random nature of γk removes the excessive prior informa-
tion. Consequently, an experimentally measured sample complexity sur-
passing the classical complexity bound can demonstrate a provable 
quantum advantage. However, the quantum strategy remains effective 
even if the challenger is unaware of γk during the measurement process, 
highlighting the practicality of the approach.

We conducted a series of hypothesis-testing games to conclusively ob-
serve the provable quantum advantage, with full details provided in 
supplementary materials section 4. In these games, the average distance 
of the peaks from the origin is proportional to 

√
κn, where the resolution 

constant κ = 0.2 controls the hardness of the task. First, we fixed the num-
ber of samples at N = 105 and classified a set of 40-mode processes using 
different levels of two-mode squeezing. The behavior of the estimators 
across these experiments is reported in Fig. 3B. As the squeezing increases, 
the displacement signal becomes more pronounced against the noise, and 
the estimator distribution evolves from being almost random to strongly 
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Fig. 3. Hypothesis testing. (A) The objective is to distinguish whether a displacement process belongs to the 
three-peak family with unknown parameters or the Gaussian family. (B) An example of the separation of the 
estimator, λ̃(β=γ), for two types of 40-mode displacement processes using different amounts of squeezing. In 
the noiseless case, the value is expected to be 0.5 (0) for the three-peak (Gaussian) channel. (C) Sample 
complexity for achieving 2∕3 success probability in a κ = 0.2 hypothesis test using varying amounts of 
squeezing. The solid and dashed lines indicate the classical complexity bound for achieving the same success 
probability and the exponential fit, respectively. The shading indicates the existence of a quantum advantage 
(see supplementary materials section 4.2 for more details). (D) Inset: measured probability of winning the 
hypothesis testing game versus the number of modes, using 105 samples at various squeezing levels. Solid lines 
represent pessimistic estimations derived from the Hoeffding bound (8). Main panel: Minimum sample 
complexity for any conventional strategy to achieve the same success probability as reported in the inset, 
calculated according to the classical complexity bound, and the corresponding sample collection time at a  
1 MHz/mode rate. Error bars represent the 1σ standard deviation from a 25-step sequential sampling.
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clustering around the true value. Next, we used the Monte Carlo method 
to determine the sample complexity for achieving a success probability 
of 2∕3 in 20-mode and 40-mode hypothesis testing games. As shown 
in Fig. 3C, squeezing reduces the sample complexity in these tasks. Even 
at these modest mode numbers, a quantum advantage is clearly observed.

Finally, we explore the scaling of quantum advantage with the number 
of modes of the displacement process. To do this, we measured the suc-
cess probability of hypothesis testing with a fixed sample size of N = 105, 
then calculated the number of classical samples required to achieve the 
same success probability. A higher success probability corresponds to a 
larger equivalent classical sample complexity and demonstrates a stron-
ger quantum advantage. As the number of modes increases, process 
classification becomes more challenging because the estimator diverges 
for even smaller values of β. This behavior is illustrated in Fig. 3D inset, 
which shows that the success probability evolves through three phases: 
starting from ≃1 for small n where the information from the displace-
ment process dominates the noise, transitioning through a region of 
decline, and eventually converging to ≃0.5 when noise prevails and the 
estimator “diverges” at β = γ, making the estimate effectively a coin toss. 
Increased squeezing shifts the transition region to higher mode numbers, 
allowing some data points to achieve success probability above what is 
possible with classical strategies using the same number of samples. 
When the success probability significantly exceeds 0.5, we compute the 
equivalent classical sample complexity and compare it with the 105 real-
ized samples. Our results, shown in Fig. 3D, emphasize how the quantum 
advantage grows as the number of modes increases. For the largest-scale 
(120-mode) experiment run across a 12-s effective sampling time at a 
1-MHz rate, we measured a success probability of 0.563 ± 0.025, exceed-
ing the bound for conventional strategy (0.5 + 3.8 × 10−11) with a confi-
dence level of 99.3%. To achieve the same success probability, 1.6 × 1014 
classical samples would be required. This translates into an expected 
measurement time of more than 600 years. Our result thus indicates a 
provable quantum advantage of 9.2 orders of magnitude.

Outlook
In this work, we have demonstrated a substantial quantum advantage in 
learning using a scalable, albeit noisy and lossy, photonic platform based 
on EPR entangled states and CV Bell measurements. Whereas previous 
demonstrations of quantum advantage have primarily focused on quan-
tum computational tasks such as Gaussian boson sampling, our work 
demonstrates a substantial quantum advantage in learning. Further, our 
research sheds light on a new quantum learning framework, where the 
information is encoded into the temporal domain. This quantum learning 
framework invites further exploration both in theory and in experiments.

Our method enables the resolution of intricate features in highly com-
plex systems, offering to potentially uncover hidden structures that 
would remain completely inaccessible with classical techniques and 
emphasizing the versatility of photonic platforms for advancing quan-
tum technologies. Looking ahead, our results have the potential to drive 
progress in quantum-enhanced sensing, parameter estimation, and ma-
chine learning, for which the photonic platform is well-suited for tackling 
high-dimensional discrete-variable and continuous-variable problems. 
We believe that extending the current protocol to more generic processes 
and introducing adaptive strategies could further strengthen the quan-
tum learning advantages.
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