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Recent advances in quantum technologies have demonstrated
that quantum systems can outperform classical ones in specific
tasks, a concept known as quantum advantage. Although
previous efforts have focused on computational speedups, a
definitive and provable quantum advantage that is unattainable
by any classical system has remained elusive. In this work, we
demonstrate a provable photonic quantum advantage by
implementing a quantum-enhanced protocol for learning a
high-dimensional physical process. Using imperfect Einstein—
Podolsky—Rosen entanglement, we achieve a sample
complexity reduction of 11.8 orders of magnitude compared to
classical methods without entanglement. These results show
that large-scale, provable quantum advantage is achievable with
current photonic technology and represent a key step toward
practical quantum-enhanced learning protocols in quantum
metrology and machine learning.

Learning the properties of a physical system by performing measure-
ments on it is at the foundation of natural sciences. In conventional
settings, this typically involves collecting a large set of independent
measurements of certain variables of the system and applying statisti-
cal methods on a classical computer to estimate their underlying dis-
tribution, from which the properties of the system can be inferred.
However, in quantum systems, the learning task is hindered by the
constraints of quantum physics, such as the inherent quantum noise
associated with measurements, encapsulated by Heisenberg’s uncer-
tainty principle. Consequently, the sample complexity—the number of
experiments required to learn certain properties of quantum systems—
can scale exponentially with the system size, rendering some learning
tasks practically infeasible using classical, conventional learning ap-
proaches (7, 2).

As an alternative to the conventional approach using independent
probe states and a classical processor for data analysis, quantum
learning strategies have been proposed (3-5, 6, 7-10). In such ap-
proaches, the probe states are not measured independently but in-
stead undergo a collective quantum algorithmic measurement before
data analysis is conducted. By leveraging quantum coherence of the
probe states and collective measurements, it has been shown that,
for certain finite-dimensional quantum systems, the sample com-
plexity can be substantially reduced (3, 9). Building on these ideas,
quantum advantage in learning was first demonstrated on a 40-qubit
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superconducting electronic platform (71), where a learning task was
accomplished using ~10° times fewer samples than conventional
methods. Another recent experimental exploration in this direction
using superconducting qubits with error mitigation is given in (10).
Given the system size limit for superconducting systems and the
challenges in capturing and transducing unknown quantum states
into superconducting qubits, it is particularly intriguing to address
how a scalable quantum learning advantage can be achieved in more
practical scenarios.

In our work, we advance the frontier of quantum learning by dem-
onstrating an unprecedented quantum advantage, achieving orders-
of-magnitude improvement on a scalable continuous-variable (CV)
photonic platform. Using imperfect Einstein-Podolsky-Rosen (EPR)
entangled states of light and a joint CV measurement approach, we
learn the amplitude and phase distributions of a multimode displace-
ment process with 10! times fewer samples than required by an
approach without entanglement. Furthermore, our photonic plat-
form enables a considerable quantum advantage in distinguishing
two families of processes. Our implementation, capable of learning
an infinite-dimensional joint displacement process spanning more
than 100 modes, tackles problems whose complexity substantially
surpasses that of the previous superconducting qubit-based demon-
stration (1I). The photonic CV platform (12) has been at the forefront
in advancing quantum technologies—from boson sampling (13, 14)
to quantum communication (715-17), computation (18-20), and sens-
ing (21-23). This work demonstrates how photonic systems can be
further leveraged to enhance our ability to learn about physical sys-
tems. Moreover, although photonic systems have previously demon-
strated their potential in various areas of quantum information, a
definitive quantum advantage in such systems has remained elusive
(24). Our achievement thus represents an important milestone in
both quantum learning and the broader field of quantum informa-
tion science.

Context

The task of quantum learning proceeds as follows: The experimenter
aims to learn a specific property of a quantum system, such as the
probability distribution of a quantum state or the noise characteristics
of a particular quantum device. The experimenter probes the device
N times, yielding N data samples (Fig. 1A), from which the target
property or probability distribution is reconstructed with a certain
precision or classified with a specified confidence.

In this work, we focus on the task of learning the properties of ran-
dom n-mode phase-space displacement processes, which model the
physical process of random amplitude and phase noise in bosonic chan-
nels. These channels are of particular interest because any CV noise
channel can be tailored into a random displacement channel by twirling
with displacement operators, similar to Pauli twirling in discrete-variable
(DV) systems (25). Moreover, learning the properties of multi-time dis-
placement processes has broad applications including gravitational-
wave detection (26, 27), Raman spectroscopy (28, 29), dark-matter
searches (30, 31), and microscopic force sensing (32).

‘We learn the dynamical displacement process, labeled A, by probing
it with quantum states of light, followed by measurements that extract
information about the probability distribution p(x) of the n-mode dis-
placement process, where a is the n-dimensional complex-valued vector
describing the phase-space displacement (see supplementary materials
section 2.1 for the formal definition of the displacement process). To
achieve the highest confidence in detecting extremely small phase-
space displacements and their correlations, we need to reconstruct the
characteristic function A(p)—the Fourier conjugate of p(a) defined on
the dual space, for large | B|2 These parts of A(B) encode the fine struc-
ture of the displacement channel in its high-frequency components. It
was proved that the conventional learning is not effective for this task:
In a previous work by some of us (8), we proved that learning A(p) to
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a fixed accuracy within a hyperball of squared
radius | B|? « n requires a number of samples
scaling exponentially in the number of modes 7.
Here, we extend this result, showing (see supple-
mentary material, Theorem 3) that this classical
complexity lower bound persists for multi-time
processes and adaptive measurements. The
bound holds for any choice of probe state as long
as it is not entangled with an external quan-
tum memory.

Quantum-enhanced learning

We use entanglement to overcome this limita-
tion on learning a random displacement pro-
cess. Our quantum-enhanced learning scheme
is illustrated in Fig. 1C. Each probe mode in the
probing state is entangled with a corresponding
auxiliary memory mode, forming EPR entan-
gled (or two-mode squeezed) states of a certain
squeezing level. The learning is performed by
sending probe modes through the displace-
ment process and then performing pairwise CV
Bell measurements with memory modes. These
Bell measurements reveal correlations between
amplitude and phase quadratures with a phase-
space resolution determined by the amount of
entanglement, bypassing the limitation im-
posed by the uncertainty principle of individ-
ual measurements. In supplementary materials
section 2.2, we describe the method for esti-
mating the characteristic function from the
measured samples.

We realize the quantum-enhanced learning
protocol in a CV optical setup, as illustrated
in Fig. 1D, with a detailed description provided
in supplementary materials section 1. The two-
mode squeezed vacuum states, comprising the
probe and memory modes, are generated by
interfering the outputs of two optical paramet-
ric oscillators (OPOs). The displacement pro-
cess is implemented by mixing a weak coherent
state into the probe modes via an unbalanced
beam splitter (see Fig. 1E). To extract the dis-
placement information, we perform Bell mea-
surements by interfering the probe and
memory modes and using homodyne detection
to measure the amplitude and phase quadra-
tures of the resulting output signals. Our OPOs
achieve up to 68% reduction of noise power
during Bell measurements, enabling high pre-
cision in detecting the effects of the process.

Process reconstruction

We demonstrate the quantum enhancement of
the learning task by reconstructing the charac-
teristic function A(f) of a class of three-peak dis-
placement processes, defined in supplementary
materials, Definition 4, using Bell measurement
outcomes. We denote the reconstructed charac-
teristic function as A(p). For a fixed squeezing
parameter 7, achieving a given reconstruction
accuracy requires N ~ exp(2¢~2" | p|?) samples,
which grows exponentially with | |2 When the
number of samples N is insufficient, the recon-
structed characteristic function A(p) can diverge
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Two-mode squeezing

Fig. 1. Quantum entanglement-enhanced learning with photons. (A) Conventional learning of a channel. A
multimode probe state is sent through a channel, A, followed by a measurement of the probe state to extract the
information about the channel. (B) Conventional learning of a multi-time physical process (also denoted as A), in
which the measurement settings are allowed to be adaptive within a sample. (C) Quantum entanglement-enhanced
learning of a multi-time process. The probe state is entangled with an external memory state. The joint measurement
of both states makes overcoming the classical complexity limit possible. (D) Implementation of quantum learning
with squeezed light. Two-mode squeezing is generated using two optical parametric oscillators (OPOs). The two
spatial modes are temporally multiplexed and used as the probe and memory state, respectively. A Bell measurement
between the corresponding temporal modes extracts the information. (E) We realize the displacement process by
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Fig. 2. Reconstruction of a physical process. (A) Experimentally reconstructed characteristic function (g)

of ann = 16-mode three-peak process (defined in supplementary materials, Definition 4) with fixed parameters
using entanglement-free strategies, compared with the true characteristic function A(f). The lines (shadings)

show the average outcome (1o standard deviation) of 100 runs of reconstruction using different numbers of
samples. (B) Same as (A), but using probe states with different amounts of entanglement. Here the number of
modes is n = 30, and we always use 10° samples. (C) Required number of samples versus n to e-close reconstruct
M) of the three-peak process along the , direction, with e = 0.24 and success probability 1 — § = 2/3. The points
are determined from experimental results, and the 1o standard deviation error bars are smaller than the data
points. Each solid line is a log-linear fit estimating the sample complexity that uses the indicated amount of
squeezing. The gray dashed line is the sample complexity lower bound that applies to any entanglement-free
strategy that can learn all processes in a large family, which includes the process that we studied. (D) Probability of
achieving an e-close reconstruction of the —4.78-dB, 30-mode characteristic function for various directions in the
dual space. The shading highlights the proximity to the displacement direction f,. Each probability is computed
using N = 1472 samples—the same as required for an e-close reconstruction in (C). The dashed line indicates the
target probability of 1 — &.

1333



RESEARCH ARTICLES

at large | B|2 To visualize this divergence behavior, we plot the recon-
structed characteristic function along aslice, = b (1,1, ...,1),b € [0,0.5]
in the high-dimensional dual space in Fig. 2A: Without squeezing (7 = 0),
the 16-mode characteristic function reconstructed from 200 samples di-
verges rapidly and fails to capture the ground truth’s peak at b = 0.3.
Furthermore, extending the radius |f| of the reconstructable hyperball
requires a substantial increase in sample complexity: ~10° samples
are needed to reveal the peak atb = 0.3.

The introduction of entanglement through two-mode squeezing (r > 0)
markedly reduces this sample complexity. As shown in Fig. 2B, when the
number of modes increases to 30, reconstruction without entanglement
(r = 0) fails even with 10° samples, requiring an impractically large num-
ber of experiments. However, with moderate entanglement, faithful re-
construction becomes achievable with the same number of samples. To
systematically investigate the effect of entanglement on sample complex
ity across different numbers of modes, we implement various n-mode
displacement processes using three distinct squeezing levels: 0 dB,
—2.26 dB,and —4.78 dB. We characterize the reconstruction performance
using (e, )-complexity: the number of samples required to reconstruct
MP) with precision e, such that |A(B)—A(B)| < e for all |B| < 0.3+/n, with
success probability 1 — 6. Further details of the process reconstruction
experiment are provided in supplementary materials section 4.

As shown in Fig. 2C, entanglement in the form of two-mode squeez-
ing significantly reduces the sample complexity, leading to substantial
quantum advantage as the number of modes increases. For n = 100,
the sample complexity with the strongest squeezing (—4.78 dB) re-
mains about 107. By contrast, from an exponential fit of low-mode num-
ber data, we estimate that the entanglement-free scheme using vacuum
probe would require a sample complexity as high as 7.3 x 10'8, or more
than 20 million years for acquiring all the data if
the samples are generated at the same rate (1
MHz per mode) as in our experiment. This rep-
resents an empirical improvement of 11.8 orders
of magnitude. Although we used a specific process
as an example, we believe the scaling of quantum
learning advantage also applies to many other
time-correlated displacement processes.

Further, in Fig. 2D, we confirm that the success
probability of reconstructing A(f) is the lowest

a hypothesis testing game (see Fig. 3A) in which a dealer prepares
several n-mode displacement processes A;. Each process may or may
not exhibit a feature —specifically, two peaks at the locations +v;, in its
characteristic function. The processes with and without the feature are
grouped into three-peak and Gaussian families, respectively (see supple-
mentary materials, Definitions 4 and 5). A challenger is allowed to imple-
ment each process N times. After all the measurements are finished, the
dealer reveals v;, and the challenger is asked to identify the family that
the process belongs to. A challenger using the quantum strategy records
the Bell measurement outcomes and computes the estimator X(ﬁ) at
B = v, once the value is announced. They then compare the value of A(f)
with a threshold 2, to classify the process. If X(ﬁ) > A, is observed, they
will guess the process as three-peak type, and otherwise as Gaussian.
Crucially, the random nature of y, removes the excessive prior informa-
tion. Consequently, an experimentally measured sample complexity sur-
passing the classical complexity bound can demonstrate a provable
quantum advantage. However, the quantum strategy remains effective
even if the challenger is unaware of y;, during the measurement process,
highlighting the practicality of the approach.

We conducted a series of hypothesis-testing games to conclusively ob-
serve the provable quantum advantage, with full details provided in
supplementary materials section 4. In these games, the average distance
of the peaks from the origin is proportional to M, where the resolution
constant k = 0.2 controls the hardness of the task. First, we fixed the num-
ber of samples at N = 10° and classified a set of 40-mode processes using
different levels of two-mode squeezing. The behavior of the estimators
across these experiments is reported in Fig. 3B. As the squeezing increases,
the displacement signal becomes more pronounced against the noise, and
the estimator distribution evolves from being almost random to strongly
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enhanced reconstruction of the 100-mode process
uses more than five orders of magnitude fewer
samples. However, the sample complexity lower
bound applies to entanglement-free schemes
that can learn the characteristic function A(f) for
any random displacement process in a large fam-
ily and all values of f in a specified bounded range,
whereas our experiment learns the characteris-
tic function for processes chosen from a smaller
family and more restricted values of . Therefore,
the above improved process reconstruction does
not demonstrate a provable quantum advantage.

To establish a provable quantum advantage, we
consider the task of identifying specific features
of an unknown process. Specifically, we design
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Squeezing / dB

Number of modes n

Fig. 3. Hypothesis testing. (A) The objective is to distinguish whether a displacement process belongs to the
three-peak family with unknown parameters or the Gaussian family. (B) An example of the separation of the
estimator, A(p =), for two types of 40-mode displacement processes using different amounts of squeezing. In
the noiseless case, the value is expected to be 0.5 (0) for the three-peak (Gaussian) channel. (C) Sample
complexity for achieving 2/3 success probability in a x = 0.2 hypothesis test using varying amounts of
squeezing. The solid and dashed lines indicate the classical complexity bound for achieving the same success
probability and the exponential fit, respectively. The shading indicates the existence of a quantum advantage
(see supplementary materials section4.2 for more details). (D) Inset: measured probability of winning the
hypothesis testing game versus the number of modes, using 10° samples at various squeezing levels. Solid lines
represent pessimistic estimations derived from the Hoeffding bound (8). Main panel: Minimum sample
complexity for any conventional strategy to achieve the same success probability as reported in the inset,
calculated according to the classical complexity bound, and the corresponding sample collection time at a
1MHz/mode rate. Error bars represent the 1o standard deviation from a 25-step sequential sampling.
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clustering around the true value. Next, we used the Monte Carlo method
to determine the sample complexity for achieving a success probability
of 2 /3 in 20-mode and 40-mode hypothesis testing games. As shown
in Fig. 3C, squeezing reduces the sample complexity in these tasks. Even
at these modest mode numbers, a quantum advantage is clearly observed.

Finally, we explore the scaling of quantum advantage with the number
of modes of the displacement process. To do this, we measured the suc-
cess probability of hypothesis testing with a fixed sample size of N' = 105,
then calculated the number of classical samples required to achieve the
same success probability. A higher success probability corresponds to a
larger equivalent classical sample complexity and demonstrates a stron-
ger quantum advantage. As the number of modes increases, process
classification becomes more challenging because the estimator diverges
for even smaller values of p. This behavior is illustrated in Fig. 3D inset,
which shows that the success probability evolves through three phases:
starting from ~1 for small » where the information from the displace-
ment process dominates the noise, transitioning through a region of
decline, and eventually converging to ~0.5 when noise prevails and the
estimator “diverges” at § = y, making the estimate effectively a coin toss.
Increased squeezing shifts the transition region to higher mode numbers,
allowing some data points to achieve success probability above what is
possible with classical strategies using the same number of samples.
When the success probability significantly exceeds 0.5, we compute the
equivalent classical sample complexity and compare it with the 10° real-
ized samples. Our results, shown in Fig. 3D, emphasize how the quantum
advantage grows as the number of modes increases. For the largest-scale
(120-mode) experiment run across a 12-s effective sampling time at a
1-MHz rate, we measured a success probability of 0.563 + 0.025, exceed-
ing the bound for conventional strategy (0.5 + 3.8 x 10~ with a confi-
dence level of 99.3%. To achieve the same success probability, 1.6 x 10™*
classical samples would be required. This translates into an expected
measurement time of more than 600 years. Our result thus indicates a
provable quantum advantage of 9.2 orders of magnitude.

Outlook
In this work, we have demonstrated a substantial quantum advantage in
learning using a scalable, albeit noisy and lossy, photonic platform based
on EPR entangled states and CV Bell measurements. Whereas previous
demonstrations of quantum advantage have primarily focused on quan-
tum computational tasks such as Gaussian boson sampling, our work
demonstrates a substantial quantum advantage in learning. Further, our
research sheds light on a new quantum learning framework, where the
information is encoded into the temporal domain. This quantum learning
framework invites further exploration both in theory and in experiments.
Our method enables the resolution of intricate features in highly com-
plex systems, offering to potentially uncover hidden structures that
would remain completely inaccessible with classical techniques and
emphasizing the versatility of photonic platforms for advancing quan-
tum technologies. Looking ahead, our results have the potential to drive
progress in quantum-enhanced sensing, parameter estimation, and ma-
chine learning, for which the photonic platform is well-suited for tackling
high-dimensional discrete-variable and continuous-variable problems.
We believe that extending the current protocol to more generic processes
and introducing adaptive strategies could further strengthen the quan-
tum learning advantages.
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