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Although measuring the deterministic waveform of a weak classical force is a well-studied problem,
estimating a random waveform, such as the spectral density of a stochastic signal field, is much less well
understood despite it being a widespread task at the frontier of experimental physics. State-of-the-art preci-
sion sensors of random forces must account for the underlying quantum nature of the measurement but the
optimal quantum protocol for interrogating such linear sensors is not known. We derive the fundamental
precision limit: the extended-channel quantum Cramér-Rao bound. In the experimentally relevant regime
in which losses dominate, we prove that non-Gaussian-state preparation and measurement are required to
achieve this fundamental limit and we determine numerically the optimal non-Gaussian protocol. We dis-
cuss how this scheme could accelerate searches for signatures of quantum gravity, stochastic gravitational
waves, and axionic dark matter.
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I. INTRODUCTION

The estimation of the spectral density of a classical pro-
cess is a ubiquitous task in continuous-variable quantum
systems. Examples include searching for excess noise in
optical interferometers due to quantum gravity [1–5], prob-
ing stochastic gravitational waves with the global network
of gravitational-wave observatories [6–10], and hunting
for axionic dark matter with microwave cavities [11–
14]. The remarkable sensitivity of contemporary devices
demands that we contend with quantum noise, the fun-
damental uncertainty in the state of the device arising
from the Heisenberg uncertainty principle. The stochastic
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signal of interest must be distinguished from the natural
fluctuations arising from the measurement of the device.

This task, sometimes called “noise spectroscopy,” can
be expressed in the language of quantum metrology, the
study of estimating parameters encoded in quantum states.
We consider a quantum device coupled to a stochastic sig-
nal, a classical continuous random variable y(t) at times
t. We assume this signal to be a Gaussian stationary ran-
dom process; assuming that the signal is Gaussian is valid
provided that the central limit theorem applies, e.g., that
we repeat the experiment many times. Assuming that the
signal is a stationary random process allows us to study
its power spectral density Syy(�) at each positive fre-
quency �. Our goal is to estimate the continuum values
of Syy(�) by measuring the state of the quantum device.
We want our estimate at each � to be unbiased and
have the minimal mean-square error (MSE). We will show
that this resembles the problem of estimating the uncer-
tainty of a single bosonic mode and so we treat that case
extensively.

Much attention has previously been dedicated to study-
ing the fundamental precision limits of estimating the
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mean values of the signal for various protocols and
quantum devices (see, e.g., Refs. [15–18]). Here, we focus
instead on estimating the spectral density Syy(�) of the
signal rather than its mean value. This is a much less stud-
ied problem. It has recently been shown that this scenario
is fundamentally different from mean-value estimation in
that non-Gaussian measurement techniques are required to
obtain optimal estimates [19]. There are still many critical
open questions, however, such as the effects of imper-
fections and the preparation of different initial quantum
states.

To guide the reader, we summarize the main results of
our work as follows:

(1) In Sec. II, we reduce the noise-estimation problem
for a linear quantum device at a fixed frequency
� to the study of a harmonic oscillator undergo-
ing a random-displacement channel. The task is
to estimate the standard deviation σ of the Gaus-
sian distribution of random displacements and, in
some cases, to simultaneously estimate the mean
displacement μ.

(2) In Sec. III, we review the prior literature on esti-
mating σ in the ideal lossless limit, using an initial
vacuum state. A number-resolving measurement,
e.g., photon counting, is optimal [19,20]. In contrast,
Gaussian measurements, such as homodyne detec-
tion, suffer the “Rayleigh curse” when the signal σ
is small. The goal of our work is to find the optimal
initial state and measurement scheme that achieves
the ultimate limit on precision, the extended-channel
quantum Fisher information (ECQFI), in the pres-
ence of loss. We also consider the simultaneous
estimation of μ and σ .

(3) In Sec. IV, we discuss imperfections. We focus on
the case of a loss η occurring before the signal is
encoded by the random-displacement channel. We
assume negligible loss after the encoding and neg-
ligible additive classical noise, σC. Experimentally,
the relevant regime is that of small signals σ 2 �
1/2 and high loss η � σ 2.

(4) In Sec. V, we find the optimal protocol for esti-
mating σ . In the lossless case, in which the ini-
tial state obeys the energy constraint

〈
n̂
〉 = N , we

show that the ECQFI is saturated by preparing an
initial single-mode squeezed vacuum (SMSV) and
then, after the encoding, antisqueezing and perform-
ing a number measurement. In the lossy case, we
show that preparing a two-mode squeezed vacuum
(TMSV) state is optimal but only if negligible loss
occurs on the ancilla mode. In the experimentally
relevant regime of high loss on all modes, numer-
ics indicate that the ECQFI is attainable, without
an ancilla, using highly non-Gaussian states and
measurements.

(5) In Sec. VI, we discuss how to simultaneously esti-
mate μ and σ . We assume that the initial state is
vacuum (which may not be optimal). For separa-
ble measurements on M copies of the final state, we
construct an adaptive measurement scheme in which
we learn about μ via quadrature measurement and
then use that information to displace back to the ori-
gin and learn about σ via number measurement. To
saturate the quantum Fisher information (QFI) for
the fixed-vacuum input state, however, a collective
measurement on the M modes is required.

(6) Finally, in Sec. VII, we discuss how our results
concerning single-mode channel estimation can be
leveraged for estimating the power spectral den-
sity of a continuously varying signal, we propose
experimental implementations to realize the optimal
estimation protocols, and we apply our results to
searches for signatures of quantum gravity, stochas-
tic gravitational waves, and axionic dark matter.

II. NOISE ESTIMATION OF A LINEAR QUANTUM
DEVICE

We now consider estimating Syy(�) at each frequency
� from measurements of the quantum device. For a linear
device, we show that this is equivalent to estimating the
random displacement of a harmonic oscillator.

A. Review of linear quantum devices

We consider a quantum device that responds linearly to
the continuous stochastic signal y(t) and is coupled to an
environment of incoming and outgoing bosonic modes as
shown in Fig. 1(a). This is a valid model for many rele-
vant quantum systems. For example, the device could be
a gravitational-wave interferometer coupled to a stochas-
tic gravitational-wave signal and to the light entering and
exiting the differential port of the Michelson interferom-
eter. In the input-output formalism [21], let the annihi-
lation operator of the outgoing bosonic mode be â(t),

(a) (b)

FIG. 1. (a) The spectral density of the outgoing bosonic mode
from a linear quantum device coupled to a classical random pro-
cess y(t), e.g., a gravitational-wave observatory coupled to a
stochastic gravitational wave. (b) The phase-plane representa-
tion of the analogous single-parameter problem at a particular
frequency �0. Given vacuum input |0〉 with covariance matrix
diag

( 1
2 , 1

2

)
, the final quantum state ρ̂(σ ) is a squeezed thermal

state with covariance matrix diag
( 1

2 , 1
2 + σ 2

)
.
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satisfying [â(t), â†(t′)] = δ(t − t′). The canonical quadra-
tures of this mode are x̂(t) := 1√

2
[â(t)+ â†(t)] and p̂(t) :=

1√
2
[−iâ(t)+ iâ†(t)], which obey [x̂(t), p̂(t′)] = iδ(t − t′).

The generalized quadrature at angle θ is then defined as
x̂θ (t) := cos(θ)x̂(t)+ sin(θ)p̂(t) such that x̂0(t) = x̂(t) and
x̂π/2(t) = p̂(t). Since the device is linear, these quadratures
must obey

x̂θ (t) = x̂(0)θ (t)+
∫ ∞

−∞
dt′ χθ(t − t′)y(t′), (1)

where x̂(0)θ (t) is the free solution (i.e., when no signal is
present) and χθ is the linear susceptibility of the device
[22,23]. In the frequency domain, all of the positive fre-
quencies are independent since the device is linear, such
that Eq. (1) becomes

x̂θ (�) = x̂(0)θ (�)+ χθ(�)y(�), (2)

where we define the Fourier transform as y(�) :=∫∞
−∞ dt ei�ty(t). The frequency-domain quadratures are

non-Hermitian but obey a conjugate symmetry x̂†
θ (�) =

x̂θ (−�) and have the commutator [x̂(�), p̂†(�′)] =
i2πδ(�−�′). Suppose that we measure x̂θ (t); then Eq. (2)
implies that the observed output-referred power spectral
density is

Sxθ xθ (�) = S(0)xθ xθ (�)+ |χθ(�)|2 Syy(�), (3)

where the total output-referred free noise S(0)xθ xθ (�) includes
the quantum noise of the device, which we assume follows
a stationary random process. In Eq. (3), the (one-sided)
power spectral density Sxθ xθ (�) of the quadratures, which
are stationary random processes in time, is defined as
follows [24]

2πδ(�−�′)Sxθ xθ (�) := 〈{x̂θ (�), x̂†
θ (�

′)}〉, (4)

where {·, ·} is the anticommutator and we assume that
the quadratures have zero mean. For example, the output-
referred power spectral density of the quantum shot noise
of the vacuum state is S(0)xθ xθ (�) = 1. Meanwhile, in Eq. (3),
the (one-sided) power spectral density of the signal at each
frequency is defined as [25]

Syy(�) = lim
T→∞

2
T

E
[|yT(�)|2

]
, (5)

where yT(�) = ∫∞
−∞ dt ei�tyT(t) = ∫ T

0 dt ei�ty(t) is the
Fourier transform of the signal yT(t) = [
(t)−
(t −
T)]y(t) windowed to the finite time interval (0, T) for some
integration time T and 
 is the Heaviside function. Here,
we take the expectation value over different realizations of
the continuous random process describing the signal y(t),

which we assume has zero mean. Whenever we compute
an expectation value with respect to the quantum state, e.g.,
〈·〉 in Eq. (4), we implicitly marginalize over the signal as
well. We reserve the notation E [·] for when we are only
taking an expectation value with respect to the signal.

Let us mention a couple of well-known properties of the
power spectral density Syy(�). First, the average power P
of the signal y(t) over time, i.e., the variance Var[y] of the
continuous random process, is given by

P = 1
2π

∫ ∞

0
d� Syy(�). (6)

And, second, provided that the signal y(t) is ergodic, the
power spectral density Syy(�) equals the Fourier transform
of the autocorrelation function Cyy(t) = limT→∞(1/T)∫∞
−∞ dt′ yT(t′ − t)yT(t′) by the Wiener-Khinchin theorem.

These useful properties motivate why the power spec-
tral density is an important quantity to estimate in an
experiment.

Returning to the problem at hand, by using Eqs. (4)–(5),
we can derive Eq. (3) from Eq. (2) [26]. We have thus
far made only the following assumptions about the sys-
tem: linearity, stationarity, and zero mean. We now make
a further assumption about the tuning of the measurement
device.

Some of our most sensitive devices of interest are optical
interferometers for which, if the resonant optical cavities
are all tuned and the Michelson interferometer is held at
total destructive interference at the differential port, then
a stochastic signal will only appear in one quadrature of
the outgoing optical mode [27]. As such, we now restrict
our attention to estimating the excess noise in one known
quadrature of the outgoing mode. We will later generalize
to sensing isotropic excess noise in both quadratures. With-
out further loss of generality, we assume that the stochastic
signal only appears in the p̂(t) quadrature such that Eq. (2)
implies that x̂(�) = x̂(0)(�) since χ0 = 0 and

p̂(�) = p̂ (0)(�)+ χπ
2
(�)y(�). (7)

The output-referred power spectral density in Eq. (3)
observed from measuring p̂(t) is then

Spp(�) = S(0)pp (�)+
∣∣∣χπ

2
(�)

∣∣∣
2

Syy(�). (8)

We consider running the experiment for a fixed finite inte-
gration time T that is long enough such that Eq. (5) implies
that Syy(�) ≈ (2/T)E[|yT(�)|2] and Eq. (8) becomes

Spp(�) ≈ S(0)pp (�)+ 2
T

E
[∣∣∣χπ

2
(�)yT(�)

∣∣∣
2
]

. (9)

We want to estimate the signal power Syy(�) at each fre-
quency � from measurements of the outgoing mode. We
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have up to now considered continuous quadrature mea-
surements. To understand other possible measurements,
it is useful to first simplify this continuous-estimation
problem.

B. Review of the deterministic case

Let us first review the deterministic case to establish
an analogy to a toy model: continuum linear waveform
estimation resembles estimating the displacement of a har-
monic oscillator at each frequency. In the deterministic
case, the signal y(t) is a real-valued function and we
want to estimate its Fourier component y(�), a complex
number, at each frequency �. It is well established that
this continuous-estimation problem reduces to a contin-
uum of independent estimation problems, one for each
frequency, and the fundamental quantum limits of this task
are well understood [15–18]. We will discuss these sen-
sitivity limits later, in Sec. V B. At a given frequency �,
the canonical deterministic estimation problem in Eq. (7)
is to estimate the displacement of p̂(�) by χπ/2(�)y(�)
in the presence of noise from p̂ (0)(�). Depending on
the parametrization of y(t), there are two independent
real parameters of y(�) to estimate in general, e.g., its
real and imaginary parts, or its amplitude and complex
phase. The displacement-estimation problems at different
frequencies are independent due to the linearity of the
device: the covariance matrix of the quadratures at different
frequencies is diagonal. Therefore, continuum-waveform
estimation corresponds to estimating the displacements of
a continuum of independent harmonic oscillators, each of
which can be dealt with separately. The only assumptions
that we have made to reach this conclusion are that the
device is linear, stationary, zero-mean, and tuned.

C. Canonical noise-estimation problem

In the stochastic case, the signal y(t) is now a con-
tinuous real-valued random process with variance given
by Eq. (6). At each frequency �, we want to estimate
Syy(�), the contribution to the average power from that
frequency component. Similarly to the deterministic case
above, the continuum problem of estimating Syy(�) at
each frequency � is equivalent to a continuum of inde-
pendent single-parameter harmonic oscillator estimation
problems. In particular, the harmonic oscillators at differ-
ent frequencies are independent due to linearity and at each
frequency the signal appears as a displacement of the har-
monic oscillator. Here, however, the displacement of p̂(�)
by χπ/2(�)y(�) in Eq. (7) is stochastic, since y(�) is
now a complex random variable. In particular, although
the absolute value of y(�) is constrained by Eq. (5) in the
limit of large T, its complex phase is uniformly distributed
on (0, 2π) since the signal y(t) is zero-mean and stationary.
Thus, we need to determine how the power spectral density

Syy(�) relates to the variance of the probability distribution
describing these random displacements.

Let us first address a technicality about the frequency-
domain quadratures. At a given frequency �, the quadra-
tures x̂(�) and p̂(�) are non-Hermitian and comprise
a total of four independent real degrees of freedom,
whereas a harmonic oscillator has only two independent
real degrees of freedom. This can be seen more clearly
by decomposing the frequency-domain quadratures into
their real and imaginary parts, which we label as q̂j (�)

for j = 1, 2, 3, 4 and define as follows [28]:

�̂q(�) =

⎡

⎢⎢⎢
⎣

q̂1(�)

q̂2(�)

q̂3(�)

q̂4(�)

⎤

⎥⎥⎥
⎦

=
√

2
T

⎡

⎢⎢⎢
⎣

Re
[
x̂(�)

]

Re
[
p̂(�)

]

Im
[
x̂(�)

]

Im
[
p̂(�)

]

⎤

⎥⎥⎥
⎦

. (10)

For a finite integration time T, this is equivalent to decom-
posing the outgoing mode into its cosine and sine phases
at frequency �, since

�̂q(�) =
√

2
T

∫ T

0
dt

⎡

⎢
⎣

cos(�t)x̂(t)
cos(�t)p̂(t)
sin(�t)x̂(t)
sin(�t)p̂(t)

⎤

⎥
⎦ .

This implies that the commutator between q̂1(�) and
q̂2(�

′) at two different frequencies � and �′ equals

[q̂1(�), q̂2(�
′)] = i

(
sin([�−�′]T)

[�−�′]T
+ sin([�+�′]T)

[�+�′]T

)
.

The second term vanishes, along with all other terms of
size O(1/[�T]) henceforth, by assuming that we integrate
for a long enough time T � 1/� given the lowest fre-
quency of interest �. For frequencies that are further apart
than the finite frequency resolution of 1/T, i.e., that sat-
isfy [�−�′]T � 1, the first term also vanishes. However,
for unresolved frequencies satisfying [�−�′]T � 1 this
commutator is approximately i, since the modes cos(�t)
and cos(�′t) are not orthogonal on the finite interval (0, T).
We thus assume a discrete frequency sampling henceforth
that is coarse enough, i.e., satisfying [�−�′]T � 1, such
that the harmonic oscillators at different frequencies com-
mute. The number of such frequency bins is proportional
to T and we will soon show that the noise and signal within
a given bin are independent of T. This means that the total
error in estimating, e.g., the power spectral density of a
white-noise process will scale as 1/

√
T in amplitude units

as expected.
We now focus on solving the estimation problem at

a fixed frequency �. The four components of �̂q(�)
are Hermitian observables that resemble the quadra-
tures of two harmonic oscillators, since [q̂1(�), q̂2(�)] =
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[q̂3(�), q̂4(�)] = i, and all other commutators are zero.
Since we assume that the signal and noise are zero-
mean and stationary, the 4 × 4 covariance matrix,
1
2 〈{q̂j (�), q̂k(�)}〉, is block diagonal such that the two
harmonic oscillators are independent. For example, the
covariance matrix for the vacuum state is 1

2δjk. By Eq. (7),
these real and imaginary parts depend on the signal as
follows:

�̂q(�) = �̂q (0)(�)+
√

2
T

⎡

⎢⎢⎢⎢
⎣

0
Re
[
χπ

2
(�)y(�)

]

0
Im
[
χπ

2
(�)y(�)

]

⎤

⎥⎥⎥⎥
⎦

. (11)

The variances of the real and imaginary parts containing
the zero-mean signal are then [29]

Var
[
q̂2(�)

] = Var[q̂(0)2 (�)] + 2
T

E
[

Re
[
χπ

2
(�)y(�)

]2
]

,

Var
[
q̂4(�)

] = Var[q̂(0)4 (�)] + 2
T

E
[

Im
[
χπ

2
(�)y(�)

]2
]

.

(12)

Let us simplify the excess variance due to the signal, i.e.,
the second term, starting with the real part as follows:

E
[

Re
[
χπ

2
(�)y(�)

]2
]

= 1
4

E
[(
χπ

2
(�)y(�)+ χ∗

π
2
(�)y∗(�)

)2
]

= 1
2

E
[∣∣∣χπ

2
(�)y(�)

∣∣∣
2
]

,

where we have used the fact that E
[
y(�)2

] = 0, since the
phase of y(�) is isotropically random. This excess vari-
ance in the real part of p̂(�) equals half the excess power
spectral density in Eq. (9) and the imaginary part is sim-
ilar. The excess power spectral density is also equal to
|χπ/2(�)|2Syy(�) by Eq. (8). Therefore, Eq. (12) may be
rewritten as follows:

Var
[
q̂2(�)

] = Var[q̂(0)2 (�)] + σ 2,

Var
[
q̂4(�)

] = Var[q̂(0)4 (�)] + σ 2,
(13)

where we have defined the common excess variance σ 2

and the gain Gpy(�) as

σ 2 := 1
2

Gpy(�)Syy(�), Gpy(�) := |χπ
2
(�)|2. (14)

The gain Gpy(�) is also sometimes called the signal trans-
fer function from y to p̂ , since it linearly relates the

signal Syy(�) to the observed spectral density Spp(�) in
Eq. (8) [30]. Since the two harmonic oscillators at each fre-
quency are independent and the noise in each is equal due
to stationarity, we can consider them separately to study
the fundamental quantum limits on estimating Syy(�) or,
equivalently, estimating σ 2. Thus, we can restrict our atten-
tion to just the harmonic oscillator corresponding, e.g., to
the real part with quadratures q̂1(�) and q̂2(�), which we
relabel as x̂ and p̂ below for brevity.

For any initial state, we have shown that estimating the
continuum Syy(�) is equivalent to a continuum of indepen-
dent copies (two for each frequency �) of the following
canonical single-parameter estimation problem. Given the
initial state ρ̂ of a harmonic oscillator with canonical
quadratures �̂x = (x̂, p̂)T such that [x̂, p̂] = i, we wish to
estimate σ 2 from measurements of the final state �σ(ρ̂)

after the nonunitary quantum channel �σ that encodes
σ . (A quantum channel is a completely positive trace-
preserving linear map between density matrices.) The
signal-encoding channel�σ represents a random displace-
ment along the p̂ quadrature and has the following Kraus
representation:

�σ(ρ̂) =
∫ ∞

−∞
dα p(α)Ûαρ̂Û†

α , (15)

where p(α) ∼ N (0, σ 2) is the weighting of the differ-
ent displacement unitaries given by Ûα = exp(iαx̂), which
displaces p̂ to p̂ + α. Here, we have assumed that the
zero-mean signal follows a Gaussian random process such
that the second moments in Eq. (13) determine the sig-
nal. Understanding this toy model of a single harmonic
oscillator undergoing random displacements is the main
focus of our work. We will solve this toy model in
Secs. III–VI, before returning to the original stochastic
waveform-estimation problem in Sec. VII.

We now provide two alternative expressions for the
encoding channel �σ that will prove useful later. First, in
the basis of x̂, �σ is the following decoherence channel
[31,32]:

〈x|�σ(ρ̂)|x′〉 = e− 1
2 σ

2(x−x′)2〈x|ρ̂|x′〉. (16)

And, second, when σ x̂ is small, we may expand Eq. (15)
to obtain the infinitesimal channel

�σ(ρ̂) ≈ ρ̂ + σ 2
(

x̂ρ̂x̂ − 1
2
{x̂2, ρ̂}

)
+ O(σ 4x̂4), (17)

where the odd terms vanish because p(α) is an even
function in α.

Let us consider the Gaussian-state case. If the initial
state ρ̂ is a single-mode Gaussian with a 2 × 2 covari-
ance matrix 
jk = 1

2 〈{�̂x (0)j , �̂x (0)k }〉 and 2 × 1 mean vector
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�μ = 〈�̂x〉, then the final state is also Gaussian with the
covariance matrix 
 + diag

(
0, σ 2

)
and the same mean

vector �μ. For example, the vacuum state |0〉〈0| with
covariance matrix 
0 = diag

( 1
2 , 1

2

)
becomes the squeezed

thermal state ρ̂(σ ) = �σ(|0〉〈0|) with covariance matrix
diag

( 1
2 , 1

2 + σ 2
)
, as shown in Fig. 1(b). We thus call �σ a

Gaussian-encoding channel, since it sends Gaussian states
to Gaussian states.

Our goal now is to solve this canonical noise-estimation
problem by understanding the optimal protocol for esti-
mating σ 2. As we will see, despite �σ being a Gaussian-
encoding channel, the optimal protocol will turn out to
be to prepare non-Gaussian initial states and perform
non-Gaussian measurements.

D. Review of Fisher information

We now review our main tools for addressing this
single-parameter estimation problem: the concepts of clas-
sical and quantum Fisher information (FI) [33–35].

Suppose that a real parameter of interest θ is encoded in
a quantum state ρ̂(θ) and that we estimate θ by perform-
ing a given measurement [i.e., a positive operator-valued
measure (POVM)] with associated probability distribu-
tion p(x|θ). The minimal MSE �2θ of unbiased estima-
tion of θ from M independent and identically distributed
measurement results satisfies the classical Cramér-Rao
bound (CCRB), �2θ ≥ (1/M )[IC(θ)]−1, where IC(θ) is
the classical Fisher information (CFI), given by

IC(σ ) =
∫ ∞

−∞
dx

[∂θp(x|θ)]2

p(x|θ) . (18)

This bound can be attained by maximum likelihood esti-
mation in the asymptotic limit such that the central limit
theorem applies. In general, saturating the CFI may require
a parameter that is sufficiently small or has a narrow
enough prior, as well as the ability to perform a large
number of independent measurements. A useful property
of the CFI is that if p(x|θ) and p(y|θ) are independent
distributions, e.g., describing two separate measurements,
then the total CFI from observing one outcome from each
distribution is simply the sum of the individual CFIs.

This may not be the optimal measurement, however, for
extracting the maximal information about θ from ρ̂(θ).
For single-parameter estimation, the quantum Fisher infor-
mation (QFI) is the CFI maximized over all possible
measurements (POVMs), IQ(θ) = supIC(θ). In terms of
the eigenvalues pj and eigenvectors |φj 〉 of the final state
ρ̂(θ) =∑j pj |φj 〉〈φj |, the QFI can be shown to be

IQ(θ) =
∑

j ,k

2
pj + pk

∣∣〈φj |∂θ ρ̂(θ)|φk〉
∣∣2

where the sum runs over only j and k such that pj +
pk > 0. For example, if a parameter θ is encoded by a

unitary exp(−iθĤ ) applied to a pure state |ψ〉, then the
QFI is IQ(θ) = 4Var|ψ〉[Ĥ ] independent of θ .

The quantum Cramér-Rao bound (QCRB), �2θ(≥
1/M )[IQ(θ)]−1, provides the fundamental minimal MSE
that can be achieved by maximum likelihood estima-
tion from the M outcomes of the optimal measure-
ment scheme. Similarly, the minimal fractional MSE with
respect to a parameter θ is bounded too, �2θ/θ2 ≥
(1/M )[θ2IQ(θ)]−1. The analog of the additivity of the CFI
for independent distributions is that the QFI for a prod-
uct state ρ̂1(θ)⊗ ρ̂2(θ) is simply the sum of the individual
QFIs.

E. Estimating standard deviation versus variance

For our single-parameter problem, we choose to esti-
mate the standard deviation σ . This is equivalent to
estimating the variance σ 2, since σ ≥ 0. The QFIs with
respect to σ and σ 2 are related by IQ(σ ) = 4σ 2IQ(σ

2)

through the chain rule. Although IQ(σ
2) may diverge

and IQ(σ ) stay finite as σ → 0, the limiting behavior
of the fractional MSEs is consistent since, in that event,
[σ 4IQ(σ

2)]−1 ∝ [σ 2IQ(σ )]−1 → ∞.

III. LOSSLESS VACUUM LIMIT

The task of estimating σ from �σ in Eq. (15), in the
absence of loss when the input state is the vacuum, has
previously been studied in Refs. [19,20,36]. We briefly
discuss this ideal lossless regime here for comparison.

Suppose that we apply �σ to ρ̂ = |0〉〈0| such that the
final covariance matrix is 
 = diag

( 1
2 , 1

2 + σ 2
)
. The QFI

for a signal encoded solely in the covariance matrix of a
single-mode Gaussian state is [37]

IQ(σ ) = Tr
[
(
−1∂σ
)

2
]

2(1 + γ 2)
+ 2(∂σ γ )2

1 − γ 4 , (19)

where γ = det(2
)−
1
2 is the purity of the Gaussian state.

For the vacuum state, Eq. (19) implies that the QFI is

IQ(σ ) = 2
1 + σ 2 −−→

σ→0
2. (20)

We will write the important limit of limσ→0 IQ(σ ) as
IQ(σ = 0) henceforth. Note that it is nonzero for the QFI.

We want to know what measurement will saturate the
QFI in Eq. (20). A homodyne measurement of p̂ is a
Gaussian measurement for which the CFI with respect

to the total standard deviation ς =
√

1
2 + σ 2 is I p̂

C(ς) =
2/ς2. This implies that I p̂

C(σ ) = 2σ 2/
( 1

2 + σ 2
)2

such that
the CFI for quadrature measurement saturates the QFI in
Eq. (20) in the classical regime of σ � 1√

2
but vanishes

in the quantum regime of σ → 0, where I p̂
C(σ ) ≈ 8σ 2,
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FIG. 2. The Fisher information (FI) with respect to (a) stan-
dard deviation σ or (b) variance σ 2 for the single-parameter
estimation problem in the lossless vacuum limit. The level of
quantum noise for the initial vacuum state, shown by the dotted
gray vertical line, is equal to Var[p̂] = 1

2 . A quadrature measure-
ment p̂ , with CFI shown in the dashed blue curve, is optimal
for signals well above this level. A number-resolving measure-
ment n̂, however, is optimal—its CFI attains the QFI shown in
the solid orange curve—for all σ including as σ → 0. In this
limit, the fractional MSE with respect to (c) σ or (d) σ 2 diverges
regardless of the measurement scheme, since θ2IQ(θ) converges
to zero.

as shown in Fig. 2(a). If we estimate σ 2 instead of σ , as
shown in Fig. 2(b), then the behavior of the fractional MSE
is the same as discussed in Sec. II E and shown in Fig. 2(c).
The conventional quadrature measurement, therefore, is
highly inefficient in the relevant limit of σ → 0. Intu-
itively, the small change in the variance induced by the
weak signal σ 2 � 1

2 is masked by the vacuum quantum
noise, leading to this vanishing sensitivity.

In comparison, a number-resolving measurement of n̂ =
â†â can be shown to saturate the QFI for all σ . Since
Ûα|0〉 = |α′〉 is a coherent state with amplitude α′ =
iα/

√
2, we can compute the probabilities in the number

basis after the encoding in Eq. (15) as

p(n) =
∫ ∞

−∞
dα
∣∣〈n|α′〉∣∣2 p(α)

= (2n)!
22n(n!)2

σ 2n

(
σ 2 + 1

)n+ 1
2

. (21)

Then, the CFI for number measurement, calculated as
I n̂

C(σ ) =∑∞
n=0 [∂σp(n)]2/p(n) by Eq. (18), equals the QFI

in Eq. (20), as shown in Fig. 2. Intuitively, if there is no sig-
nal, then the vacuum state remains an eigenstate of n̂ and
no particles are counted. If a particle is counted, then it
must come from the signal. This is unlike the quadrature
measurement, where some variance in the measurement
results remains due to the quantum noise even if there is
no signal.

Let us illustrate how much worse quadrature measure-
ment is compared to the optimal number-resolving mea-
surement. If the signal is comparable to the quantum noise,

i.e., σ = 1√
2
, then the QFI is 4

3 compared to the quadrature
measurement CFI of 1. Instead, if the signal is 10 times
(100 times) smaller than the quantum noise in amplitude
units, i.e., σ = 1

10
√

2
(σ = 1

100
√

2
), then the QFI is roughly

51 times (5001 times) greater than the CFI. Correspond-
ingly, suppose that we want to achieve an MSE�2σ below
some target value. If σ = 1

10
√

2
, e.g., then it takes only

2% of the number of quadrature measurements required to
attain the target value if we instead use number-resolving
measurements (recall that the Cramér-Rao Bound on the
MSE is (1/M )[I(σ )]−1 given M measurements).

This estimation problem is analogous to quantum super-
resolution in optical imaging [20,38,39] and spectroscopy
[40,41]. These resolution problems are characterized by
having vanishing signal: ∂θ ρ̂ → 0 as θ → 0, where θ is
the parameter of interest. This vanishing signal leads to
a “Rayleigh curse,” where the CFI of the naive measure-
ment, e.g., image-plane photon counting in the case of
optical imaging, also vanishes as θ → 0. The QFI, how-
ever, remains positive in this limit and is attained by
the CFI of a particular nonstandard measurement, e.g.,
spatial-mode demultiplexing in the case of optical imag-
ing. Analogously, we define the Rayleigh curse to refer
to any scenario in which the FI converges to zero in the
limit of zero signal. We have seen above that here the
Rayleigh curse arises for the CFI of the naive quadrature
measurement but can be avoided by performing a number
measurement.

IV. LOSS AND CLASSICAL NOISE

Realistically, the quantum state will experience noise
channels before and after the encoding such that the noise-
less channel�σ becomes the noisy channel�′

σ . We restrict
our attention to Gaussian noise channels. We want to
understand how these imperfections limit our ability to
estimate σ and whether the Rayleigh curse can still be
avoided to increase QFI in the small-signal limit.

A. Gaussian states

We first consider preparing a Gaussian initial state in the
limit of σ → 0. For Gaussian noise channels, ∂σ�′

σ → 0
as σ → 0 and information about σ is encoded only in the
covariance matrix of the output Gaussian state. Whether
the Rayleigh curse reappears is addressed by the following
claim.

Claim 1. For any Gaussian state such that a parame-
ter σ is encoded only on its covariance matrix 
(σ) and
limσ→0 ∂σ
 = 0, then IQ(σ = 0) �= 0 (i.e., the state does
not exhibit the Rayleigh curse) if and only if there exists
a symplectic eigenvalue of 
 equal to 1

2 + kσ 2 for some
constant k > 0.
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This is the Gaussian version of the quantum resolution
criterion in Ref. [40]. The proof of this claim is given
in Appendix A. For a single-mode Gaussian state, this
claim implies that overcoming the Rayleigh curse is possi-
ble only if �′

σ=0 (ρ) is pure. In that case, the QFI comes
only from the purity [the second term in Eq. (19)]: the
QFI is nonvanishing in the limit σ → 0, and equal to
IQ(σ = 0) = 2k′, if and only if the purity is γ = 1 − k′σ 2

for some constant k′. For a multimode Gaussian state in the
limit σ → 0, at least one of the modes needs to be pure for
the QFI not to vanish.

B. Loss channel

We apply Claim 1 to a couple of examples of com-
mon Gaussian noise channels, assuming an initial vacuum
state. First, consider the “pure” or “cold” loss channel
�loss
η , which models, e.g., losses due to coupling with a

zero-temperature bath. This can be modeled as a beam-
splitter operation with an ancillary vacuum mode that is
then traced out as shown in Fig. 3. For a loss η ∈ (0, 1),
this channel has the following Kraus representation [42]:

�loss
η (ρ̂) =

∞∑

n=0

K̂nρ̂K̂†
n ,

where the Kraus operators are

K̂n = 1√
n!

(√
ηâ
)n
(1 − η)

1
2 (â

†â−n).

Note that here η is the loss and 1 − η is the efficiency.
The effect of this channel on the mean vector and covari-
ance matrix of a single-mode Gaussian state is as follows:
�μ �→ √

1 − η �μ and 
 �→ (1 − η)
 + η
0, where 
0 =
diag

( 1
2 , 1

2

)
. If the initial state is a vacuum state, then the

final state in the limit of σ → 0 is pure and there is no
Rayleigh curse. The precise nonzero value of the vac-
uum QFI depends on whether the loss occurs before or
after the encoding. If the loss occurs before the encoding,
then the QFI is unchanged from 2/(1 + σ 2), since the vac-
uum |0〉 is stable under the loss channel �loss

η . But if the
loss occurs after the encoding, then the QFI degrades to

(a) (b) (c)

FIG. 3. The quantum state ρ̂ ′ after a loss can be thought of as:
(a) the result, ρ̂ ′ = �loss

η (ρ̂), of a nonunitary quantum channel
�loss
η ; (b) the result of a beam-splitter unitary Ûη with an ancillary

vacuum mode |0〉A that is then traced out; or (c) for an optical
system, the state at one of the output ports of a fictitious beam
splitter with a vacuum mode.

2(1 − η)/(1 + (1 − η)σ 2), since the state after the encod-
ing is no longer vacuum and therefore is not stable under
the loss channel.

In this work, we will consider different initial states
that will not be stable under the loss channel, unlike the
vacuum. We will focus on the impact of a known loss
η occurring before the encoding, which now will affect
the QFI, and assume that no loss occurs after the encod-
ing. We address the effect of noise channels occurring
after the encoding in Appendix B 1, where we show that
measurement noise can, in theory, be overcome by using
a suitable control unitary. We analyze the implications
of an unknown loss in Appendix B 2, where we justify
neglecting this effect given a vacuum input state.

C. Classical noise channel

We also consider a Gaussian noise channel �noise

C

that
models a source of uncorrelated classical noise, e.g., ther-
mal fluctuation processes in optics or a nonzero tempera-
ture of microwave resonators. For M modes, this channel
is a random-displacement channel

�noise

C

(ρ̂) =
∫

CM
d�α p(�α)D̂(�α)ρ̂D̂(�α)†, (22)

where p(α) ∼ N (0, 1
2
C) for a positive-semidefinite

2M × 2M matrix 
C and the M -mode displacement oper-
ator is D̂(α) =∏M

i=1 exp(αiâ
†
i − α∗

i âi), where âi is the
annihilation operator for the ith mode. This classical noise
channel acts on Gaussian states as an additive noise source:

 �→ 
 +
C. [Note that �σ = �noise

diag(0,σ 2)
in Eq. (15).]

For a given single-mode Gaussian state with fixed
〈
n̂
〉 =

N , a nonzero 
C will make the final state mixed and
always lead to a Rayleigh curse, as σ → 0 by Claim 1. For
example, if 
C = diag

(
σ 2

x , σ 2
p

)
with vacuum input, then

IQ(σ ) = 2σ 2
(
1 + 2σ 2

x

)2

κ (κ + 1)
, (23)

where

κ = σ 2 + σ 2
x + σ 2

p + 2σ 2
x

(
σ 2 + σ 2

p

)
. (24)

As long as one of σx and σp is nonzero, then IQ(σ = 0) =
0 here. In particular, for the isotropic case σC := σx = σp ,
the Rayleigh curse arises when the signal is dominated by
the classical noise, σ � σC.

Classical noise changes the optimal measurement
for the vacuum input-state case, such that num-
ber measurement alone no longer saturates the QFI.
Instead, the optimal measurement is to squeeze 
 �→
diag

(
e−2r, e2r

)

 with e2r = 1 + 2σ 2

x immediately after
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the encoding process. The squeezing level is cho-
sen such that 
 = diag

(
1
2 + σ 2

x , 1
2 + σ 2 + σ 2

p

)
becomes

diag
( 1

2 , 1
2 + κ

)
. After this additional squeezing operation,

we then perform a number measurement. The gain in the
CFI from this additional squeezing operation in the limit
of small classical noise compared to direct number mea-
surement is 1 + 4σ 2

x ; hence it is marginal given small
σx but it is still highly favorable compared to quadrature
measurement.

Let us discuss how to determine, e.g., σp for a given
experiment. The total output-referred free noise S(0)pp (�) in
Eq. (3) is the sum of the output-referred quantum noise
SQ

pp(�) and the output-referred classical noise SC
pp(�) such

that

Spp(�) = SQ
pp(�)+ SC

pp(�)+ Gpy(�)Syy(�). (25)

For example, the output-referred quantum noise is
SQ

pp(�) = SQ,vac
pp (�) = 1 if the quantum noise spectrum

is dominated by the quantum shot noise from the vac-
uum, which we denote as SQ,vac

pp (�) (i.e., if the input
state is vacuum and the device has no effects, such as
quantum radiation pressure noise, that modify the quan-
tum state if there is zero signal). Similarly to how σ

is given by Eq. (14), the parallel classical noise is thus
σ 2

p := 1
2 SC

pp(�) and, analogously, the perpendicular clas-
sical noise is σ 2

x := 1
2 SC

xx(�). (More generally, 
C equals
1/2 times the classical noise contributions to the matrix
of cross spectra of x̂(�) and p̂(�).) Furthermore, let us
relate, e.g., σp to a common set of performance metrics
for interferometers: the signal-referred noise spectral den-
sities. These metrics are obtained by dividing Eq. (25) by
the gain Gpy(�) and are given in power units as follows:

S(�) := Spp(�)

Gpy(�)
= SQ(�)+ SC(�)+ Syy(�),

SQ(�) := SQ
pp(�)

Gpy(�)
, SC(�) := SC

pp(�)

Gpy(�)
.

(26)

Here, SQ(�) is the signal-referred quantum noise, SC(�)

is the signal-referred classical noise, and S(0)(�) =
SQ(�)+ SC(�) is the total signal-referred free noise. For
example, for gravitational-wave observatories, S(0)(�) is
the strain sensitivity to deterministic gravitational waves.
If the total free-noise spectrum is dominated by the
quantum shot noise from the vacuum, which is the
case for gravitational-wave observatories at kilohertz fre-
quencies, then S(0)(�) = SQ,vac(�) = 1/Gpy(�), where
SQ,vac(�) = SQ,vac

pp (�)/Gpy(�). This provides the follow-
ing simple relationship to determine the gain Gpy(�)

from existing tuned interferometer designs that meet these

assumptions:

Gpy(�) = SQ,vac(�)−1. (27)

The classical noise may then be determined from the
signal-referred spectra, e.g., σ 2

p := 1
2SC(�)/SQ,vac(�).

In summary, classical noise limits the QFI for small
signals when preparing the vacuum state. Unless stated
otherwise, we assume henceforth that the classical noise
is negligible, i.e., that the signal is dominant, σ � σC.
This is motivated by certain applications, discussed later
in Sec. VII B, for which the search for stochastic signals
is limited by imperfections from decoherence—quantum
backgrounds—rather than classical backgrounds. We will
revisit nonzero classical noise and whether its impact can
be avoided by preparing different initial states in Sec. V G.

V. OPTIMAL INITIAL STATE

We now consider the initial state and measurement
scheme that comprise the optimal protocol for sensing the
signal σ encoded by �σ with and without losses. In par-
ticular, we want to know whether entangled resources and
collective measurements are necessary.

A. Review of channel quantum Fisher information

Building on Sec. II D, here, we introduce our tools for
determining the optimal initial state: the channel QFI and
extended-channel QFI [43,44].

Given an initial state |ψ〉 and a channel �θ that encodes
a parameter θ in the final state ρ̂(θ) = �θ(|ψ〉〈ψ |), then
let the QFI with respect to θ be denoted as I�θ (|ψ〉〈ψ |)

Q (θ).
The QFI from the optimal initial state |ψ〉 is called the
channel QFI (CQFI) of �θ and is given by

I�θ ,no ancilla
Q (θ) = sup

|ψ〉
I�θ (|ψ〉〈ψ |)

Q (θ), (28)

where we emphasize that no ancilla is allowed when calcu-
lating the CQFI. From the convexity of the QFI, it suffices
to optimize over pure initial states.

If we prepare an initial state |�〉 that is also entan-
gled with some ancilla, e.g., a TMSV state, then we might
improve the estimation of θ . Let the joint channel be�σ ⊗
�A, where �A is some channel that acts on the ancilla. In
the noiseless-ancilla case, �A = 1A is the identity. In this
ideal case, the CQFI of the joint channel�σ ⊗ 1A is called
the extended-channel QFI (ECQFI) of �σ and is given by

I�θQ (θ) = sup
|�〉

I(�θ⊗1A)(|�〉〈�|)
Q (θ). (29)

The ECQFI is the maximum amount of information about
the parameter θ that can be extracted after the channel
�θ acts on the quantum device. Note that the inequal-
ity I�θQ (θ) ≥ I�θ ,no ancilla

Q (θ) between the ECQFI and the
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CQFI always holds. If, as in some cases, I�θQ (θ) is strictly

larger than I�θ ,no ancilla
Q (θ), then entanglement with an

ancilla is a required resource for optimal signal extraction
[45].

Realistically, however, we expect that the ancilla should
also experience some loss such that �A = �loss

ηA
, where ηA

is some ancilla loss, rather than �A = 1A. The CQFI of
this joint channel�σ ⊗�loss

ηA
then represents the maximum

information feasibly available. The key questions to ask
are then whether the CQFI and ECQFI of �σ ⊗�loss

ηA
are

equal and, similarly, whether the CQFI and ECQFI of �σ

are equal. If the latter is true, then all four of the CQFI
and ECQFI of�σ ⊗�loss

ηA
and the CQFI and ECQFI of�σ

are equal and the ultimate sensitivity limit can be achieved
without using an ancilla. This will turn out to be the case
in our work (see Sec. V F below).

When exploring these limits, we can also impose other
physical restrictions. For example, since the unconstrained
ECQFI I�θQ (θ) might be unbounded at θ = 0 in the loss-
less case, we can constrain the average energy 〈Ĥ 〉 ∝〈
n̂
〉+ 1

2 of the initial state of the harmonic oscillator.
Let the ECQFI in Eq. (29) constrained to initial states
|�〉 with

〈
n̂
〉 = N average occupation number per mode

be denoted I�θ ,N
Q (θ). (Note that while

〈
n̂
〉 ≤ N may be

a more natural constraint, the bounds that we find are
always nondecreasing in N such that it suffices to consider〈
n̂
〉 = N .)
We need to therefore calculate the ECQFI of our channel

�σ with respect to σ to determine the optimal initial state
and whether entanglement is a required resource, with and
without noise channels on the system and ancilla.

B. Review of the deterministic case

Before proceeding to our case of a random-displacement
channel, we briefly review the case of a deterministic
displacement channel to establish the similarities and dif-
ferences between the two cases.

Consider a deterministic displacement of the state ρ̂ by
μ along p̂ such that we want to estimate μ from measure-
ments of Ûμρ̂Û†

μ, where Ûμ = exp(iμx̂). In the lossless
case, if ρ̂ = |ψ〉〈ψ | is pure, then the QFI is IQ(μ) =
4Var|ψ〉[x̂]. Since Var|ψ〉[x̂] can be made arbitrarily large,
the unconstrained ECQFI is unbounded. As such, we
constrain the initial state |ψ〉 to have N average occu-
pation number per mode,

〈
n̂
〉 = N . The maximum value

of Var|ψ〉
[
x̂
]

given the constraint of
〈
n̂
〉 = N is attained

by an SMSV state, in which case Var|ψ〉
[
x̂
]

is equal
to ξN := N + 1

2 + √
N (N + 1). Note that ξN → 2N as

N → ∞. The ECQFI is then

IÛμ,N
Q (μ) = 4ξN −−−→

N→∞
8N , (30)

which is achieved by preparing an SMSV state and, e.g.,
measuring the quadrature p̂ . Another optimal measurement
is to instead antisqueeze after the encoding and then per-
form a number measurement n̂. We emphasize that this
asymptotic scaling with N is the fundamental limit for loss-
less deterministic displacement sensing. The Heisenberg
limit of N 2 for phase estimation cannot be achieved for
displacements.

Realistically, however, the state will experience some
losses such that the total channel is not unitary. Suppose
that the state encounters a loss η before the encoding such
that the total channel is �′

μ(ρ) = Ûμ�
loss
η (ρ̂)Û†

μ. In this
lossy case, Ref. [18] has shown that an SMSV state is still
the optimal initial state and attains the following ECQFI
given the constraint of

〈
n̂
〉 = N :

I�
′
μ,N

Q (μ) = 4ξN

η (2ξN − 1)+ 1
−−−→
N→∞

2
η

. (31)

The high-energy limit of the deterministic ECQFI is then
bounded by 2/η, which cannot be surpassed using any
initial state. For example, this result is known in the
gravitational-wave-observatory context where, to sense
deterministic gravitational waves in the presence of opti-
cal losses, it is optimal to inject a squeezed optical state
into the differential port of the Michelson interferometer
and perform a quadrature measurement [46], as is presently
done [47–50].

C. Lossless case

We now return to studying the ECQFI of the random-
displacement channel �σ with respect to σ . We prove the
following claim about the optimal protocol.

Claim 2. In the lossless case, the ECQFI constrained to
initial states with

〈
n̂
〉 = N per mode is

I�σ ,N
Q (σ ) = 4

2σ 2 + ξ−1
N

, (32)

which is saturated by preparing an initial SMSV state
and performing a number-resolving measurement after
first antisqueezing. Entanglement with an ancilla is not a
required resource.

The proof of Claim 2 is given in Appendix C 2. We use
an established technique of bounding the ECQFI using a
sequence of purifications of �σ by Uhlmann’s theorem
[18,43,44]. We find the following upper bound on the
ECQFI:

I�σ ,N
Q (σ ) ≤ 4

2σ 2 + Var
[
x̂
]−1 , (33)

where Var
[
x̂
]

is calculated with respect to the initial state.
Minimizing Eq. (33) over the initial state is equivalent to
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optimizing Var
[
x̂
]

given the constraint of
〈
n̂
〉 = N , which

is attained by an SMSV state. By calculating the QFI using
Eq. (19), we observe that an SMSV state is optimal for any
σ and saturates the ECQFI in Eq. (32).

Claim 2 implies that the behavior of the ECQFI depends
on the ratio between N and 1/4σ 2. For N � 1/4σ 2,
I�σ ,N

Q (σ ) grows linearly as 8N similarly to Eq. (30) but
if N � 1/4σ 2, then I�σ ,N

Q (σ ) converges to 2/σ 2.
We comment on the limit of vanishingly small signals

σ → 0 such that the upper bound in Eq. (33) becomes
4Var

[
x̂
]

and is tight for any initial state in this limit [51].
(Curiously, this equals the QFI for deterministic displace-
ments in Sec. V B.) In Fig. 4(a), for this small-signal
limit of σ → 0, we compare the ECQFI attained by an
SMSV state versus the average number

〈
n̂
〉

to the QFI of
other states, such as coherent, TMSV, Fock, Schrödinger’s
cat, and finite-energy Gottesman-Kitaev-Preskill (GKP)
grid states [52]. (We review finite-energy GKP states in
Appendix H.) In the high-energy limit of

〈
n̂
〉→ ∞; cat

states also attain the ECQFI of 8N ; TMSV, finite-energy
GKP states, and Fock only grow as 4N ; and coherent states
remain at the vacuum level of 2, since displacements com-
mute with the encoding channel�σ . In this limit of σ → 0,
an optimal measurement of the final state ρ̂ is to project it
onto the initial state |�〉〈�|, which can be implemented by
an “echo protocol” [53]. For example, it suffices to directly
perform a number-resolving measurement of the SMSV in
this vanishing-signal limit of σ → 0. For arbitrary σ > 0,

(a)

(b)
high-energy limt

FIG. 4. The QFI from preparing different initial states, indi-
cated in the legend, versus the initial average occupation number
per mode in (a) the lossless case and (b) the case of a loss of
η = 0.1 occurring before the encoding with σ = 10−3. We com-
pare the QFI from preparing each initial state to the ultimate
precision limit, the extended-channel QFI (ECQFI). The shaded
gray region is thus inaccessible [but the upper bound at N is
loose in (b)]. In the lossy case, the SMSV and the TMSV with
ηA > 0 exhibit the Rayleigh curse, i.e., QFI → 0 as σ → 0, and
the Schrödinger’s cat state has the same QFI as a coherent state
for approximately N > 3.

however, we need to first antisqueeze and then perform a
number-resolving measurement as stated in Claim 2.

D. Lossy case

Any actual experiment will experience loss that will
dramatically change the ECQFI and optimal initial state
compared to the lossless case. Consider using the initial
state that is optimal in the lossless case, an SMSV state.
Given a loss η occurring before the encoding, then the total
channel becomes �′

σ = �σ ◦�loss
η , where we assume that

the classical noise is negligible. By Eq. (19), the QFI for
an SMSV state in the high-energy limit of N → ∞ is

IQ(σ ) = 8σ 2

(
η + 2σ 2

)2 . (34)

In the small-loss limit, η � σ 2, the QFI is approximately
2/(η + σ 2), which will be shown to be optimal at any σ 2.
In the experimentally relevant loss-dominated regime of
0 < σ 2 � η, the SMSV performs poorly. The QFI for an
SMSV vanishes as σ → 0: it suffers from the Rayleigh
curse and performs even worse than vacuum, as shown
in Fig. 5. This raises the question: What is the ECQFI in
the presence of significant loss, η � σ 2, and which initial
states saturate this bound?

We prove the following claim about the optimal protocol
in the lossy case.

Claim 3. The ECQFI given a loss η before the encoding
is given by

I�′
σ

Q (σ ) = 2
η + σ 2 , (35)

which is attained by preparing a TMSV state with noiseless
ancilla (ηA = 0) in the high-energy limit of N → ∞.

FIG. 5. The FI versus the standard deviation σ for different
initial states, indicated in the legend, with a loss of η = 0.1 occur-
ring before the encoding. The high-energy limit of the ECQFI
and the squeezed states is shown. The shaded gray region is
inaccessible. For large σ , e.g., σ ∼ η, we calculate the QFI for
the Fock state |8〉 numerically using a truncated Hilbert space of
dimension 50.
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The proof of Claim 3 is given in Appendix C 3, where
we use the same method as the lossless case but with dif-
ferent purifications, inspired by the deterministic case [18].
The optimal measurement of a TMSV state with noiseless
ancilla is to perform number-resolving measurements of
the two modes after first applying antisqueezing and, in
general, a beam splitter [37]. Suppose that we instead per-
form number-resolving measurements directly on the two
modes of a TMSV state with average number per mode
n ∈ Z without first antisqueezing. Then, the CFI does not
attain the TMSV QFI and instead equals the lower QFI of
the equivalent Fock state |n〉 given below.

We have also determined the following upper bound on
the ECQFI for a given finite

〈
n̂
〉 = N :

I�′
σ ,N

Q <
4

2(η + σ 2)+ (1 − η)ξ−1
N

, (36)

but this upper bound is not tight for η > 0 and a fixed finite
N . For example, a TMSV state with noiseless ancilla (ηA =
0) does not saturate this upper bound for finite N , as shown
in Fig. 4(b).

For finite σ > 0, if the loss ηA on the ancilla mode
before the encoding is small, ηA � σ 2, η, then a TMSV
state saturates the ECQFI in Eq. (35) in the high-energy
limit of N → ∞, as shown in Appendix D. Experimen-
tally, however, this requirement is likely too stringent to
probe the small signals of interest. In the realistic regime
of σ 2 � η, ηA, a TMSV state does not saturate the ECQFI.

In the σ → 0 limit, all squeezed Gaussian states suffer
the Rayleigh curse by Claim 1, provided that loss occurs on
every mode (i.e., with fixed η, ηA > 0). The only Gaussian
states with nonvanishing QFI are then the coherent states,
which still have a QFI of 2/(1 + σ 2), since they remain
coherent after the loss before the encoding. This raises the
question of whether it is possible to attain the ECQFI in
the realistic regime of σ 2 � η, ηA by using non-Gaussian
states. We address this question in Sec. V F below and
show numerically that indeed it appears to be possible.

E. Limit of small signals

Before moving to discuss our numerical results with
non-Gaussian states, let us gain some more understand-
ing of the small-signal σ → 0 limit. In the lossless case,
we have already observed that the QFI in this limit is
4Var

[
x̂
]

[51]. Here, we want to understand the lossy case
in which the state is mixed before the channel is applied.
In Appendix E, we prove the following general claim.

Claim 4. Given an initial state ρ̂ and the random unitary
channel

�σ(ρ̂) =
∫ ∞

−∞
dθ p (θ) Ûθ ρ̂Û†

θ , (37)

where p(θ) ∼ N (0, σ 2) and Ûθ is unitary, then the QFI is

IQ(σ = 0) = 4〈Ĥ�̂⊥Ĥ 〉,

where Ĥ = iÛ†
0
˙̂U0 is the Hermitian generator at σ = 0,

�̂⊥ is the projection operator onto the null space of ρ̂,
and the expectation value is calculated with respect to ρ̂,
i.e., 〈Ô〉 = Tr[ρ̂Ô]. An optimal measurement that attains
the QFI is measurement of Û†

0�̂⊥Û0.

This result means that Ĥ needs to map some of ρ̂ into
its null space to obtain information about σ in the limit of
σ → 0. In particular, if ρ̂ is full rank, then it suffers the
Rayleigh curse.

For our random-displacement channel, given a pure ini-
tial state |ψ〉, then IQ(σ = 0) = 4〈x̂�̂⊥x̂〉, where ρ̂ =
�loss
η (|ψ〉〈ψ |) is the state after the loss but before the

encoding. This result is useful when IQ(σ = 0) is nonzero.
For example, it implies that, for a Fock state |N 〉, the
QFI is IQ(σ = 0) = 2(1 − η)N (N + 1) and is attained by
number measurement.

What is the optimal initial state in this limit of σ → 0?
The ECQFI is not well defined unless we specify the order
of limits since, by Eq. (29),

lim
σ→0

I�θQ (θ) �= sup
|�〉

lim
σ→0

I(�θ⊗1A)(|�〉〈�|)
Q (θ).

Nevertheless, we claim that limσ→0 I�θQ (θ) is the relevant
quantity of interest since, in practice, the signal is small
but finite 0 < σ � 1 and we can only search for signals
above the classical noise floor. In the following subsection,
we discuss a family of initial states that are numerically
optimal for a fixed small but finite 0 < σ � 1.

An open question about this limit of σ → 0 is whether
the only single-mode pure initial states that are finite
rank after the loss �loss

η are either finite superpositions of
coherent states or bounded in the Fock basis.

We discuss a generalization of Claim 4 in Appendix F.
Also, in Appendix G, we give an example of how the
upper bound on the ECQFI, which is analogous to Eq. (32),
can be loose for random unitary channels acting on finite-
dimensional systems.

F. Non-Gaussian states

We now explore whether there exist non-Gaussian states
of the probe that can outperform the Gaussian states and
saturate the ECQFI in Eq. (35) in the relevant high-loss
regime σ 2 � η, ηA.

We start by analyzing the QFI with Fock states. As
shown above, the QFI with a Fock state |N 〉 is IQ(σ =
0) = 2(1 − η)N (N + 1). The optimal Fock state |N 〉 is
thus N ≈ −(1/log(1 − η))− 1, where the Bose enhance-
ment factor (N + 1) balances with the loss factor (1 − η)N
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to achieve a QFI of IQ(σ = 0) ≈ −2/e(1 − η) log(1 − η).
In the limit of small η, IQ(σ = 0) ≈ 2/eη, which misses
the ECQFI by roughly a factor of e, or a penalty of roughly
4.3 dB. This is shown in Fig. 4(b) for η = 0.1, for which
the optimal Fock QFI is IQ(σ = 0) = 7.75 at N = 8, 9,
while the ECQFI is 2/η = 20. That is, for a loss of 10%,
we only need to prepare a Fock state of eight particles to
get within 4.1 dB of the ultimate limit. This may be achiev-
able experimentally in the microwave regime as, e.g., Fock
states of up to 100 photons have been generated in super-
conducting microwave cavities [54] and Fock states of four
photons have already been used in axion searches [55],
as we discuss later. The key takeaway here is that for
σ 2 � η, ηA, Fock states outperform all Gaussian states but
do not attain the ECQFI in Eq. (35), although they may be
a good first step experimentally.

To attain the ECQFI for 0 < σ 2 � η, ηA, we now con-
sider finite-energy GKP states. We review these states in
Appendix H; in particular, the |GKP�〉 family of finite-
energy states given by a superposition of displaced SMSV
states of width ∝ � within a Gaussian window of width
∝ �−1. To calculate the QFI with respect to σ numer-
ically, we model |GKP�〉 in the Fock basis of a trun-
cated Hilbert space. For the lossless case and � � 1,
the overall variance of the pure initial state |GKP�〉 is
Var
[
x̂
] = Var

[
p̂
] = 1

2�
−2, which equals the average occu-

pation number
〈
n̂
〉 = N [56] such that the QFI for small σ

is 4N , as shown in Fig. 4(a). GKP states are promising for
quantum computing and error-correction applications and
much engineering is being done to produce them reliably
[57]. For example, controlled displacements with a qubit
can produce any quantum state of a bosonic mode, at least
in principle [58]. Fock states, binomial-code states, and
GKP states have been prepared experimentally using this
method [59]. To saturate the QFI of the GKP state above,
a non-Gaussian measurement is once again required. We
numerically determine the Fock-basis coefficients of the
optimal set of orthogonal states to project onto for σ > 0.
These states are more complicated than number or momen-
tum eigenstates. We do not know how these states relate
to the GKP states or what they represent physically, but
we suspect that realizing this measurement will be as chal-
lenging as producing the GKP states themselves. We defer
determining how to realize this measurement to future
work.

For the lossy case, e.g., a loss of η = 0.1 occurring
before the encoding, the QFI from preparing finite-energy
GKP states |GKP�〉 converges numerically to the QFI of
a TMSV state with noiseless ancilla (ηA = 0) for N > 10,
i.e.,� < 0.2, as shown in Fig. 4(b). At higher energies, the
QFI increases toward the ECQFI. For example, with η =
0.1 and σ = 10−3, |GKP�〉 attains a QFI above 19, within
95% of the ECQFI of 20, using states with

〈
n̂
〉 = N > 100

in a truncated Hilbert space of dimension O(1000). Note

that we have only considered the small-signal σ behav-
ior here, since it is the most relevant regime, and not the
large-σ behavior shown in Fig. 5 for the other initial states.

We conjecture that preparing finite-energy GKP states of
higher average number, which will require more peaks and
a larger truncated Hilbert space, can get arbitrarily close to
the ECQFI for any fixed σ 2 � η. We expect the conver-
gence to be slow given that a TMSV state with noiseless
ancilla (ηA = 0) only converges asymptotically. This con-
jecture is based on the above numerics and, heuristically,
the connection between the GKP and TMSV infinite-
energy states discussed below. It also would be interesting
to understand the performance in the limit of σ → 0.

Moreover, we conjecture that the ECQFI for a fixed
finite

〈
n̂
〉 = N is saturated by preparing a TMSV state with

noiseless ancilla for all N . Numerically, we have searched
for different non-Gaussian single-mode states that perform
better than a TMSV state with noiseless ancilla with the
same large

〈
n̂
〉 = N but have not found any. We describe

our numerical methods in Appendix I. Briefly, we have
found that sparse superpositions of finitely many Fock
states also outperform Fock states and approach the ECQFI
at high energies. For example, we have found a sparse
state |ψnum.〉 =∑23

j =0 cj |20j 〉 with
〈
n̂
〉 = 158.9 and a QFI

of 18.4, within 9% of the ECQFI of 20 for σ 2 = 10−6

and η = 0.1. Intuitively, e.g., the signal trajectory from |0〉
to |1〉 dominates the loss trajectory from |20〉 to |1〉 for
finite signals σ 2 = 10−6 and η = 0.1. These sparse states
are similar to optimized binomial quantum error-correcting
codes [60].

Finally, we remark that the high numerical performance
of the finite-energy GKP states for sensing a random dis-
placement in the presence of loss is intriguing, as the GKP
infinite-energy state was originally designed for the cor-
rection of random-displacement noise [52]. Both the GKP
infinite-energy state and the TMSV infinite-energy state
can be used to form error-correction codes that are sensi-
tive to random displacement signals along p̂ yet protected
against random-displacement noise along x̂. (We discuss
this further in Appendix D.) In the next subsection, we
will show that this property makes these states resilient to
classical noise along x̂. It would be interesting to under-
stand how this property is related to their performance in
the presence of loss.

G. Classical noise case

We now address the case of significant classical noise
such that the total channel is �′

σ = �σ ◦�noise

C

for a given
classical noise matrix 
C in Eq. (22). Losses are not
present unless otherwise noted. In Appendix J, we prove
that the ECQFI and optimal initial state depend on 
C as
follows.
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First, suppose that the classical noise is confined to the
same quadrature, p̂ , as the signal, i.e., 
C = diag

(
0, σ 2

p

)

with σp > 0. Then, the Rayleigh curse is unavoidable for
σ � σp and the noiseless ECQFI cannot be recovered,
since there is no way to distinguish the signal and the noise.
For a fixed finite σ > 0, the ECQFI is

I�′
σ ,N

Q (σ ) = 4σ 2

(σ 2 + σ 2
p )
[
2(σ 2 + σ 2

p )+ ξ−1
N

] , (38)

which reduces to Eq. (23) in the vacuum case (N = 0) with
σx = 0. The ECQFI in Eq. (38) is attained for a given

〈
n̂
〉 =

N by preparing the appropriate SMSV state and perform-
ing the noiseless optimal measurement—antisqueezing
followed by a number-resolving measurement. In the case
of parallel classical noise σp and loss η, in the high-energy
limit the ECQFI becomes

I�′
σ

Q (σ ) = 2σ 2

(η + σ 2 + σ 2
p )(σ

2 + σ 2
p )

, (39)

such that, in the experimentally relevant regime of σ 2 �
σ 2

p � η, the ECQFI approaches 2σ 2/ησ 2
p , which exhibits

the Rayleigh curse. In comparison, the QFI from preparing
an SMSV state in the high-energy limit is

IQ(σ ) = 8σ 2

[
η + 2

(
σ 2 + σ 2

p

)]2 , (40)

which can be attained by performing the above
scheme—antisqueezing followed by a number-resolving
measurement. It can also be attained by performing a
quadrature measurement, but only in the high-energy limit,
as otherwise quadrature measurement is suboptimal for an
SMSV state at any given finite N . The ratio of the ECQFI
in Eq. (39) to the QFI from preparing an SMSV state in
Eq. (40) is thus

g := I�′
σ

Q (σ )

IQ(σ )
=
(
η + 2ς2

)2

4ς2
(
η + ς2

) , (41)

which is a function of η/ς2, where ς2 := σ 2 + σ 2
p

and g ≥ 1 by definition of the ECQFI. If η � ς2,
then this ratio g approaches one and preparing an
SMSV state is close to optimal. In the above exper-
imentally relevant regime of σ 2 � σ 2

p � η, however,
η � ς2 and g approaches η/4σ 2

p , which is large.
When g is large, i.e., the classical noise is sufficiently
small compared to the loss, then preparing a TMSV
state with noiseless ancilla or preparing non-Gaussian

states can outperform an SMSV state. If the loss on the
ancilla can be made smaller than the classical noise on
the system, i.e., ηA � σ 2

p � η, then a TMSV state with
lossy ancilla can also outperform an SMSV state. Devel-
oping low-loss quantum memories may thus be a viable
direction to pursue experimentally as an alternative to non-
Gaussian-state preparation, as the required measurement
scheme for the TMSV state is simply Gaussian opera-
tions (beam-splitter and squeezing unitaries) followed by
photodetection.

Second, suppose that the classical noise is confined
to the quadrature opposite to the signal, i.e., 
C =
diag

(
σ 2

x , 0
)
, with σx > 0. The effect of this opposite

quadrature noise is fundamentally different from the effect
of noise in the same quadrature as the signal; unlike the
same quadrature case, noise in the opposite quadrature
can be overcome in the limit of large N and does not
necessarily lead to a Rayleigh curse. For fixed finite val-
ues of σ , σx > 0, the noiseless ECQFI in Eq. (32) can
be recovered by preparing an SMSV state in the high-
energy limit of N → ∞. Intuitively, the classical noise
can be squeezed after the encoding while simultaneously
antisqueezing the signal. A given SMSV state with fixed
finite

〈
n̂
〉 = N , however, still exhibits the Rayleigh curse as

σ → 0, such that an SMSV state may not be optimal for
a given

〈
n̂
〉 = N and σ . In comparison, there exist finite-

energy states, e.g., a TMSV state with noiseless ancilla,
that do not exhibit the Rayleigh curse and that recover
their respective noiseless QFI in the high-energy limit, e.g.,
limN→∞ limσ→0 IQ(σ ) = 4N for a TMSV state.

Finally, suppose that the classical noise appears in both
quadratures, i.e., 
C = diag

(
σ 2

x , σ 2
p

)
with σx, σp > 0. For

example, suppose that the classical noise is isotropic with

C = diag

(
σ 2

C, σ 2
C

)
and σC > 0. Then, the Rayleigh curse

is unavoidable, as σ → 0 with σC fixed and the noise-
less ECQFI cannot be recovered. The ECQFI with σx = 0
in Eq. (38), however, can be recovered for a fixed finite
σ > 0 by preparing an SMSV state in the high-energy limit
despite σx > 0. In the isotropic case, this means simply
replacing σp by σC in Eq. (38).

VI. SIMULTANEOUS ESTIMATION OF THE
MEAN AND VARIANCE

We have focused so far on estimating the variance of
a random process. In contrast, most work on quantum
metrology up to now has been dedicated to estimating
the mean value of a signal rather than its variance. For-
mally, estimating the deterministic encoding of a signal is
equivalent to mean estimation in the zero-variance limit.
Here, we unify these two efforts as we consider the opti-
mal simultaneous estimation of the mean and the variance.
We emphasize that we only consider the case in which the
initial state is vacuum such that any loss occurring before
the encoding can be ignored.
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A. Review of quantum multiparameter estimation

We now introduce the tools of quantum multiparame-
ter estimation, in contrast to single-parameter estimation
as reviewed in Sec. II D. In the multiparameter case, a vec-
tor of real parameters �θ is encoded in a quantum state ρ̂(�θ).
Given M independent and identically distributed measure-
ments of the probability distribution p(x|�θ), the CCRB
provides a tight lower bound on the covariance matrix,

�θ , of the estimators of �θ as
�θ ≥ (1/M )[IC(�θ)]−1, where
matrix inequalities A ≥ B are interpreted henceforth as
A − B being positive semidefinite and the classical Fisher
information matrix (CFIM) is

IC(�θ)i,j =
∫ ∞

−∞
dx
∂θip(x|�θ)∂θj p(x|�θ)

p(x|�θ) .

As in the single-parameter case, the CCRB is asymptoti-
cally saturable with maximal likelihood estimators and the
CFIMs of two independent observations sum: if p(x|�θ) and
p(y|�θ) are independent distributions, then the total CFIM
from observing one outcome from each is the sum of the
two CFIMs.

The QCRB provides a further lower bound on the
covariance matrix of the estimators given any measure-
ment strategy,


�θ ≥ 1
M

[IC(�θ)]−1 ≥ 1
M

[IQ(�θ)]−1.

Here, the quantum Fisher information matrix (QFIM) is
defined as

[IQ(�θ)]ij = 1
2

Tr[ρ̂{L̂i, L̂j }],

where the Hermitian operator L̂i is the symmetric loga-
rithmic derivative (SLD) of ρ̂ with respect to θi, which
is defined implicitly by the equation ∂θi ρ̂ = 1

2 {L̂i, ρ̂}.
Given the spectral decomposition of ρ̂ =∑j pj |φj 〉〈φj |,
the SLDs are given by

L̂i =
∑

k,l

2〈φk|∂θi ρ̂|φl〉
pk + pl

|φk〉〈φl|,

where the sum runs over only k, l such that pk +
pl > 0. Similarly to the single-parameter case, the QFIM
for a product state ρ̂1(θ)⊗ ρ̂2(θ) is simply the sum of the
individual QFIMs.

Unlike the single-parameter case, however, this bound is
not saturable a priori. A necessary and sufficient condition
for the asymptotic saturability of the QFIM is the weak-
commutativity condition [61]

Tr
[
ρ̂[L̂i, L̂j ]

]
= 0, ∀i, j . (42)

If this weak-commutativity condition holds, then a joint
(i.e., collective) measurement of many copies of ρ̂ may

be necessary to asymptotically saturate the QFIM. (If this
condition does not hold, then the Holevo CRB would
instead be required to find a tight bound [17,62].)

B. QCRB for simultaneous estimation

We now consider the problem of estimating μ and σ
from the encoding in Eq. (15) but with p(α) ∼ N (μ, σ 2).
We assume that the initial state is the vacuum state, such
that it becomes the displaced squeezed thermal state with
�μ = (0,μ) and 
 = diag

( 1
2 , 1

2 + σ 2
)
. The QFIM about

parameters �θ encoded in a single-mode Gaussian state is
given by a generalization of Eq. (19) [63]

[IQ(�θ)]jk = Tr
[

−1[∂θj
]
−1[∂θk
]

]

2(1 + γ 2)
+ 2[∂θj γ ][∂θkγ ]

1 − γ 4

+ [∂θj �μ]T
−1[∂θk �μ]. (43)

Let �θ = (μ, σ)T. Then the QFIM for the vacuum state is

IQ(μ, σ) =
[

2
1+2σ 2 0

0 2
1+σ 2 ,

]

(44)

such that the QCRB per independent measurement is
�2μ = �2σ = 1

2 for σ � 1. We emphasize here that the
M measurements must be independent and identically dis-
tributed, which means that the stochastic signal must be
uncorrelated between the M measurements, i.e., all off-
diagonal components are zero in the covariance matrix
of the M experiments in time or space. This assumption
will be relevant later when we discuss the application to
searching for a stochastic gravitational-wave background.

This bound is the best we could expect for: the esti-
mation variances of σ and μ given by it are the same as
in each respective single-parameter case. If the QCRB is
tight, therefore, we can estimate the two parameters simul-
taneously with a precision for each that is identical to its
respective single-parameter case.

We check the saturability of the QCRB using the weak-
commutativity condition in Eq. (42). By calculating the
SLDs for the Gaussian channel [37,64], we find that
Eq. (42) holds for the vacuum case. Our remaining task is
to determine the optimal asymptotic measurement scheme
that saturates the QCRB and whether it must be a joint
measurement acting collectively on multiple copies of the
state.

C. Separate measurements

For the vacuum case, while a number-resolving mea-
surement of n̂ is optimal for estimating σ alone (in the
μ = 0 case) and μ alone (in the σ = 0 case), it is inef-
ficient for estimating the two parameters simultaneously.
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Analogously to Eq. (21), the probability of a number-
measurement outcome n is

p(n) =
∫ ∞

−∞
dα
∣∣〈n|α′〉∣∣2 p(α)

= e
−μ2

2(σ2+1) σ 2n

n!
(
σ 2 + 1

)n+ 1
2

[
μ2n (σ

2n − [4(σ 2 + 1)]n)

2nσ 4n(σ 2 + 1)n

+n!L(−
1
2 )

n

(
− 2μ2

4σ 2(σ 2 + 1)

)]
,

where L(α)n (x) is the generalized Laguerre polynomial.
In the relevant limit of μ, σ � 1, the probabilities are
p(0) ≈ 1 − a and p(1) ≈ a, where a = 1

2 (μ
2 + σ 2). These

probabilities are degenerate with respect to μ and σ such
that only

√
μ2 + σ 2 can be estimated and μ cannot be

distinguished from σ . Indeed, the CFIM for a number
measurement is

I n̂
C(μ, σ) = 2

(
μ2 + σ 2

) (
1 − μ2 + σ 2

)
[
μ2 μσ

μσ σ 2,

]

(45)

which is singular, and the only nonzero eigenvalue corre-
sponds to the parameter

√
μ2 + σ 2.

For simultaneous estimation of μ and σ , therefore, we
need to add a measurement that will break this degeneracy.
This can be accomplished by adding a quadrature measure-
ment. In the limit of μ, σ � 1, quadrature measurement is
optimal for estimating μ yet provides no information about
σ since it is Rayleigh cursed, as can be observed from the
CFIM

I p̂
C(μ, σ) =

⎡

⎢⎢⎢
⎣

2
1 + 2σ 2 0

0
8σ 2

(
1 + 2σ 2

)2

⎤

⎥⎥⎥
⎦

−−→
σ→0

(
2 0
0 0

)
.

Performing a combination of number and quadrature mea-
surements should thus allow for simultaneous estimation.
Suppose that we perform many measurements of which
the proportion of number measurements is p for some
p ∈ (0, 1). For this protocol, the CCRB per measurement is


 =
[
pI n̂

C + (1 − p)I p̂
C

]−1

= 1
2(1 − p)

⎛

⎜
⎝

1 −μ
σ

−μ
σ

1 − p
p

+ μ2

pσ 2 ,

⎞

⎟
⎠

such that the minimum MSEs are �2μ = 1/2(1 − p) and
�2σ = 1/2p + μ2/2(1 − p)pσ 2. The QCRB per mea-
surement of �2μ = �2σ = 1

2 is, therefore, not saturated
by this separate measurement strategy.

Intuitively, p̂ provides an optimal measurement of μ
and n̂ provides an optimal measurement of σ for a suffi-
ciently small μ. These observables, however, only weakly
commute, since

〈
[p̂ , n̂]

〉 = −i
〈
x̂
〉 = 0, such that these mea-

surements cannot be performed simultaneously. Since only
one of them is performed each time, �2μ suffers from
a factor-of-(1 − p) gap from the QCRB and, similarly,
�2σ suffers from a gap of p . Although �2σ suffers an
additional uncertainty of μ2/2p(1 − p)σ 2, this can be sup-
pressed asymptotically by reducing μ adaptively, i.e., by
estimating μ and then nulling by displacing the state back
toward the vacuum using the estimate of μ before the num-
ber measurement. We describe a suitable adaptive protocol
further in Appendix K.

In various cases, the figure of merit is a weighted sum of
the variances, i.e., Tr[W
], where W = 2 diag(1 − w, w) ,
with w ∈ (0, 1), is the weight matrix. Informally, the
weight w represents how much more we care about esti-
mating σ than μ or vice versa. We thus want to know the
optimal proportion of number measurements p for a given
w to minimize this figure of merit:

Tr[W
] = (−2pw + p + w)σ 2 + wμ2

(1 − p)pσ 2 .

The optimal proportion can be shown to be

p = w

w +
√

w[wμ2+(1−w)σ 2]
μ2+σ 2

,

such that the optimal figure of merit is

Tr[W
] = 1 + 2μ2w
σ 2

+ 2

√
μ2 + σ 2

σ 2

√
w
[
wμ2 + (1 − w)σ 2

]
,

which does not saturate the QCRB of Tr[WI−1
Q ] = 1,

except in the limit of w = 0, which corresponds to esti-
mating μ by solely performing quadrature measurements.
This is due to two penalty terms. The first penalty term,
2μ2w/σ 2, stems from nonzeroμ and can be asymptotically
removed with an adaptive protocol. The second penalty
term is fundamental and appears for any w �= 0, 1. In the
limit μ → 0, which is attainable with an adaptive proto-
col, the optimal p is p = √

w/(
√

w + √
1 − w) and the

optimal figure of merit is 1 + 2
√

w(1 − w), which attains
the QCRB for w = 0, 1. The worst-case scenario corre-
sponds to equal weights, i.e., w = 0.5, where the optimal
proportion of number and quadrature measurements is also
equal, i.e., p = 0.5, and the figure of merit is Tr[W
] =
2 + 2μ2/σ 2, since �2μ = 1 and �2σ = 1 + 2μ2/σ 2.

Numerical results of the adaptive and nonadaptive
schemes are shown in Fig. 6, where we plot the MSE in
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FIG. 6. The numerical mean-square estimation error (MSE)
compared to the Cramér-Rao bounds (CRBs) for simultane-
ous estimation of μ and σ versus the number of indepen-
dent measurements M . The shaded gray region is inaccessi-
ble with the input state fixed as the vacuum state. (a) The
nonadaptive-separate-measurements scheme with σ = 0.05 and
different ratios of μ/σ . (b) Adaptive separate measurements
are more precise than the nonadaptive strategy with σ = 0.05
and μ/σ = 0.5 but neither reach the QCRB asymptotically as
M → ∞.

estimating σ . Denoting the M outcomes of the quadra-
ture measurement and number measurement as {pi}M

i=1 and
{ni}M

i=1 respectively, the estimator of μ is μ̃ = (1/M )
∑

i pi

and the estimator of σ is ς = √(2/M )
∑

i ni − μ̃2. The
distribution of ς is not Gaussian and hence it only con-
verges to the CCRB of �2σ = 1 asymptotically, as shown
in Fig. 6.

While we have shown that there is no combination of
number and quadrature measurements that can saturate the
QCRB, we would need to calculate the Nagaoka-Hayashi
bound to prove that no other separate measurement scheme
can attain the QCRB [65,66].

D. Joint measurements

Suppose that we perform joint measurements on
the M independent and identical copies of the final
state ρ̂ = �σ(|0〉〈0|). This collective state ρ̂⊗M is
an M -mode Gaussian state with 2M -by-1 mean vec-
tor �μ = (0,μ, 0,μ, · · · , 0,μ)T and 2M × 2M covari-
ance matrix 
 =⊕M

j =1 diag
( 1

2 , 1
2 + σ 2

)
in the basis

(x̂1, p̂1, · · · , x̂M , p̂M )
T. This M -mode state can be trans-

formed to the (anti)symmetric basis such that �μ =
(
√

Mμ, 0, 0, 0, · · · , 0, 0)T, where the symmetric mode is
listed first and 
 is unchanged. We emphasize that the
elements of this (anti)symmetric basis are orthogonal and
commute. This shows that measuring the p̂ quadrature of
the symmetric mode is a sufficient statistic for μ. The
remaining M − 1 antisymmetric modes can then be used
to measure σ performing a number measurement on each

mode. Absorbing the M factors from the CRBs, the CFIM
for this joint measurement is 2 diag(M , M − 1), which
saturates the QFIM in Eq. (44) of 2Mdiag(1, 1) in the
asymptotic limit of M → ∞.

It is therefore possible to saturate the QFIM if we can
perform joint measurements on M independent and identi-
cal copies of the final state. These M copies can correspond
to different experiments distributed in space or time. For
uncorrelated experiments distributed in space, the required
transformation to symmetric and antisymmetric modes
could be done using a sequence of beam-splitter unitaries;
while for uncorrelated experiments distributed in time, the
transformation may be done using quantum memories, as
further discussed in Sec. VII A.

This protocol is an instance of the following general
statement for any quantum system.

Claim 5. Given an initial pure state |ψ〉 and the random
unitary channel

�σ ,μ(|ψ〉〈ψ |) =
∫ ∞

−∞
dθ p (θ) Ûθ |ψ〉〈ψ |Û†

θ , (46)

where p(θ) ∼ N (μ, σ 2) and Ûθ = exp(−iθĤ), then the
QFI with respect to either μ → 0 or σ → 0 equals
4Var[Ĥ ] and the QFIM is simultaneously saturable with
a joint measurement in the asymptotic limit of M → ∞.

The proof of Claim 5 is given in Appendix L. The key
idea is the same as in our particular case above: while the
parameter μ displaces the state in the symmetric subspace
of the M copies, σ takes the state out of the symmetric
subspace. The QFI with respect to μ is saturated by mea-
suring a suitable basis in the symmetric subspace, while the
QFI with respect to σ is saturated by measuring the projec-
tion onto the antisymmetric subspace. Similar protocols to
saturate the QCRB by projecting onto the symmetric and
antisymmetric subspaces have previously been proposed
for superresolution in imaging [67] and estimating phase
diffusion in qubits [68].

Lastly, we remark that preparing collective initial states
could improve the joint measurement of the mean and
variance in the presence of losses. The optimal collective
strategy is to prepare the symmetric mode in an SMSV
state to sense the mean μ and to prepare the antisymmet-
ric modes in the optimal non-Gaussian states to sense the
standard deviation σ , e.g., GKP states.

VII. STOCHASTIC WAVEFORM ESTIMATION,
IMPLEMENTATION, AND APPLICATION

We now solve the continuous-estimation problem of
determining Syy(�) at each frequency�. By the chain rule
from σ to Syy(�) using Eq. (14), the QFI with respect to
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Syy(�) is

IQ[Syy(�)] = Gpy(�)
2

8σ 2 IQ(σ ). (47)

where we include a factor of 2 to account for adding the
information from the independent real and imaginary parts
of the mode at �.

By Eqs. (39) and (47), the ECQFI for sensing Syy(�) in
the presence of an input loss η and signal-referred parallel
classical noise SC(�) from Eq. (26) is thus equal to

I�′
σ

Q [Syy(�)] = [Syy(�)+ SC(�)+ 2ηSQ,vac(�)
]−1

· [Syy(�)+ SC(�)]−1, (48)

where we have used Eq. (27) to relate the gain Gpy(�)

to the signal-referred quantum shot noise from the vac-
uum, SQ,vac(�). For example, if the initial state is vacuum,
then the QFI with respect to Syy(�) is given above by
setting η = 1 and is attained by performing a number-
resolving measurement at each frequency. To attain the
ECQFI in Eq. (48) at each frequency � and increase
the QFI beyond the vacuum case by roughly a factor of
1/η in the vanishing-signal limit, we need to instead pre-
pare non-Gaussian initial states and perform non-Gaussian
measurements independently in the cos(�t) and sin(�t)
signal components of Eq. (10). This is experimentally
demanding, as we discuss in detail later.

Let us compare the ECQFI in Eq. (48) to the QFI from
preparing an SMSV state. In the limit where the signal
and classical noise are small compared to the quantum
shot noise, i.e., Syy(�),SC(�) � ηSQ,vac(�), the ECQFI
in Eq. (48) may be approximated as

I�′
σ

Q [Syy(�)] ≈ {2ηSQ,vac(�)[Syy(�)+ SC(�)]
}−1

.

In comparison, by Eqs. (40) and (47), the QFI from prepar-
ing an SMSV state is attained in the high-energy limit by
performing a quadrature measurement and is given by

IQ[Syy(�)] = [Syy(�)+ SC(�)+ ηSQ,vac(�)]−2,

which is approximately IQ[Syy(�)] ≈ [ηSQ,vac(�)]−2 in
the shot-noise–dominated limit. (For example, in the
vacuum-injection case, the CFI from quadrature measure-
ment is given by setting η = 1.) The ratio between the
ECQFI and the QFI from preparing an SMSV state is thus
large and given by [cf. Eq. (41)]

I�′
σ

Q [Syy(�)]

IQ[Syy(�)]
≈ ηSQ,vac(�)

2
[
Syy(�)+ SC(�)

] ,

such that experiments where the signal and classical noise
are small compared to the quantum shot noise can be

significantly accelerated by preparing non-Gaussian states
compared to preparing an SMSV state.

In principle, there is a continuum of independent param-
eters Syy(�) to estimate the spectrum but, in practice, we
are often only interested in distinguishing spectra from
a family Syy(�|�θ) parametrized by a finite set of real
parameters, �θ . For example, below, in Sec. VII B, we will
examine the single-parameter case in which the spectrum
Syy(�|α) = α�(�) is solely determined by the unknown
scale parameter α, since the morphology �(�) is known.
Additionally, given a limited measurement bandwidth ��
and a total measurement interval �T, it is only possible
to make a finite number of measurements M = ���T/π .
The task then becomes to estimate �θ from the measure-
ment outcomes {Syy(�j |�θ)}M

j =1 at the frequencies {�j }M
j =1

such that the QFIM is

[IQ(�θ)]ij =
M∑

k=1

IQ[Syy(�k|�θ)]∂Syy(�k|�θ)
∂θi

∂Syy(�k|�θ)
∂θj

,

(49)

where, since the modes at each frequency are independent
of each other by linearity, the total QFIM is the sum of the
individual QFIMs. Note that the optimal measurement at
each frequency to attain the QFIM depends on the initial
state.

We may generalize the choice of temporal basis. We
have so far assumed that we measure the state of the
Fourier component at a given frequency, equivalent to
measuring the cosine and sine functions in the time domain
as given by Eq. (10). We generalize this description, as
the Fourier basis is expressed in a formal limit that is not
experimentally accessible. Instead, we may measure the
state in an arbitrary temporal basis {wj }M

j =1 of orthogonal
functions such that

∫∞
−∞ dt wj (t)w∗

k(t) = δjk. The tempo-
ral basis can be chosen to fit the given signal model
and, in particular, each temporal mode, wj , can be asso-
ciated with a parameter of interest, θj . The state of each
temporal mode is described by the density matrix ρ̂k :=∫∫∞

−∞ dτdτ ′ wk(τ )ρ̂(τ , τ ′)w∗
k(τ

′) and the operators that act
on this state may be similarly constructed, e.g., the anni-
hilation operator is âk := ∫∞

−∞ dτ wk(τ )â(τ ) [69]. Here,
ρ̂(τ , τ ′) is the density matrix of a single transverse mode
of the outgoing bosonic field where the wave parameter
τ = t − cz depends on time t and the distance along the
spatial propagation axis z, along which the mode propa-
gates at speed c. For example, this state could represent a
paraxial Gaussian beam of light or a wire acting as a trans-
mission line. Note that we still assume that the noise is
stationary.

Using a temporal measurement basis is a significant
departure from the deterministic displacement case, in
which we record the time series from quadrature mea-
surement and can then choose any temporal basis post
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hoc using classical processing. Here, we instead directly
perform, e.g., a number measurement of each temporal
mode, which is highly advantageous compared to quadra-
ture measurement for sensing stochastic signals. The mea-
surement comes at the cost, however, of not being able
to later process the data classically to study a differ-
ent temporal basis. Implementations of the independent
preparation of non-Gaussian states and performance of
non-Gaussian measurements of each temporal mode must
be developed for optimal stochastic waveform estimation.
We discuss two possible pathways below—resonant filters
and cooperative quantum memories.

A. Potential experimental implementations

We first consider the case of preparing the vacuum state
and measuring in the Fourier basis. The QFI for an input
vacuum state at a given frequency is saturated by number
measurement at that frequency. This measurement can be
achieved using a resonant filter to extract a band of Fourier
modes followed by a number-resolving measurement. For
example, in the optical domain, this may be done using
resonating filter cavities and low-background photodetec-
tors [24,70]. This implementation, however, can demand
a high number of resonant filters. While in principle we
only require one filter per parameter θ , in practice we
may require additional filters, e.g., to remove background
classical noise. Optically, implementing narrow-band filter
cavities may be difficult because long round-trip lengths
and low scattering loss are required. Furthermore, imple-
menting the measurement in an arbitrary temporal basis
or, e.g., the non-Gaussian measurement required for a
GKP finite-energy input state may be challenging to do all
optically.

A more promising pathway is to instead prepare the
initial states in a dedicated ancilla and then couple the
states from that ancilla to the appropriate temporal basis of
the incoming bosonic mode of the main device. The time
reversal of the coupling process can then load the outgoing
bosonic mode from the device into an ancilla to be mea-
sured. A key example of this protocol would be to use the
two-photon Raman transitions of atoms [71] to transmit
and receive states in a given temporal basis. To accomplish
this in the future with atom-based experimental platforms,
we outline the following five requirements:

(R1) preparing non-Gaussian bosonic initial states using
the electronic states of atoms or ensembles of atoms

(R2) implementing the optimal non-Gaussian projective
measurements using atomic states

(R3) multiplexing such preparation and measurement
procedures across many such atomic ensembles

(R4) achieving high cooperativity couplings that mini-
mize transmission loss into and out of these ancillas

(R5) creating long-lived or distantly distributed
memories

In general, an optimal stochastic waveform search would
demand simultaneous implementation of (R1)–(R4),
which have some competing requirements. (R1) and (R2)
are feasible with various platforms and schemes, e.g.,
preparing Fock states with efficient projective readout [72–
78] and coherent population trapping [79,80] of atomic
states. (R3) is feasible using lattice traps [81] or tweezer
arrays [82]. (R4) is feasible using the Purcell effect via
cavity enhancement or nanophotonics [83]. Finally, (R5)
is required to realize the optimal joint measurement of
the associated mean and variance from Sec. VI D using
many independent and identical copies of the state, which
may correspond to experiments distributed distantly in
space (e.g., observatory networks jointly estimating com-
mon deterministic and uncorrelated stochastic signals) or
in time (e.g., rare events with collective deterministic and
uncorrelated stochastic properties). (R5) has been demon-
strated in many kinds of systems [84–86] but its integration
with the other requirements is an ongoing effort in the field
of emerging quantum technologies.

While, in the above discussion, we emphasize optical
sensors and atomic memories, microwave systems are sim-
ilarly promising. They can leverage superconducting cavi-
ties and nonlinear junctions [87–91] to form qubits that can
efficiently produce non-Gaussian states [92] across multi-
plexed devices [93] for fundamental physics and sensing
applications [94]. The need for low classical noise sug-
gests that the greatest benefit will be for microwave sensors
operating in the �200-MHz range that can search for sig-
nals above the thermal black-body radiation of dilution
refrigerators [95], i.e., in the σ � σC regime [96].

B. Applications

We now consider fundamental-physics applications that
highlight the metrological advantages of non-Gaussian-
state preparation and measurement for sensing stochastic
signals.

1. Quantum gravity

The Verlinde-Zurek theory of quantum gravity predicts
large-scale “geontropic” length fluctuations that scale with
the holographic surface area of a given volume of space-
time [1,2]. This signal is predicted to manifest as excess
noise in the phase quadrature p̂ of an optical Michelson
interferometer that scales linearly with the arm length.
This scenario is described by Eq. (3) with θ = π/2, where
Syy(�) = α�(�) for some scale factor α to be estimated,
and known signal morphology �(�) (e.g., the fiducial
spectrum from Ref. [2]) such that σ 2 = 1

2αGpy(�)�(�)

by Eq. (14). Previous observations have constrained α

to be less than one [4]. The future Gravity from the
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Quantum Entanglement of Space-Time (GQuEST) optical
interferometry experiment is proposed to further constrain
α [3,70] (see also Ref. [5]).

In GQuEST, the classical noise background is projected
to be 7 orders of magnitude below the quantum shot noise,
σ 2

C ∼ 10−7 � 1
2 , while the optical loss is projected to be

η, ηA ∼ 0.1, limited by resonating filter cavities outside
the interferometer. (Contributions to the optical loss from
inside the interferometer are projected to be as low as
10−4.) For signals below the classical noise background,
i.e., σ � σC, this situation is described by Eq. (39), which
exhibits the Rayleigh curse. We search instead for sig-
nals above the classical noise background, i.e., σC � σ �
η, ηA. In this loss-dominated regime, preparing squeezed
states or performing quadrature measurements introduces
the Rayleigh curse. By Eqs. (47) and (49), the integrated
QFI with respect to α is

IQ(α) =
M∑

j =1

Gpy(�j )�(�j )

4α
IQ(σ ).

For example, if the initial state is a vacuum state, then, by
Eq. (48) with η = 1, the QFI is

IQ(α) =
M∑

j =1

Gpy(�j )�(�j )

α[2 + αGpy(�j )�(�j )]
, (50)

which can be attained by number measurement at each fre-
quency �j . For the vacuum case, the results from Sec. III
thus indicate that photon counting accelerates the accrual
of information by 1/4σ 2, compared to quadrature mea-
surement at each frequency. This acceleration reduces the
required observing time or number of independent mea-
surements to reach a given confidence level by the same
factor. In comparison, if an SMSV state is prepared, for
which quadrature measurement is optimal in the high-
energy limit, then the acceleration compared to the vacuum
case with quadrature measurement is a factor of 1/η2 by
Eq. (34). Thus, photon counting beats squeezing for this
application of stochastic signal estimation since 4σ 2 � η.

The constraint on α can be further improved by prepar-
ing non-Gaussian states. The ECQFI in Eq. (35) indi-
cates that if we prepare the optimal states and perform
the optimal measurements, then the accrual of informa-
tion about α could be accelerated by 1/(4σ 2η) compared
to the vacuum case with quadrature measurement, or by
1/η compared to the vacuum case with number mea-
surement. Thus, optimal state preparation and measure-
ment, if implemented through the aforementioned emerg-
ing quantum technology, could significantly accelerate this
fundamental-physics application.

2. Stochastic gravitational waves

Gravitational-wave searches may also benefit from our
results. The global network of gravitational-wave obser-
vatories [7] presently consists of the Laser Interferomet-
ric Gravitational-wave Observatory (LIGO) [8], Virgo
[9], and the Kamioka Gravitational-Wave Observatory
(KAGRA) [10]. Each of these observatories operates as
a Michelson interferometer with two ports—the common
and differential ports. The common port corresponds to the
common mode of the interferometer, i.e., the symmetric
mode of the two arms, and a large coherent state is injected
into it. The differential port corresponds to the differential
(antisymmetric) mode of the interferometer. Information
about the gravitational wave is encoded in the output of
the differential port: a passing gravitational wave causes
small displacements along the phase quadrature of the
quantum states reflecting from the output differential port.
Presently, these observatories are optimized to estimate
the mean value (i.e., signal amplitude) of the gravitational
wave by injecting highly squeezed states into the differen-
tial port and performing quadrature measurements of the
output mode [50]. This is the optimal strategy for sensing
deterministic displacements, as discussed in Sec. V B. The
gravitational-wave strain sensitivity as an amplitude spec-
tral density is proportional to the inverse square root of
the FI.

Here, we consider instead operating a gravitational-
wave observatory as a variance (i.e., signal-power) sensor
for the stochastic signal from a single stochastic source
or an incoherent background of many sources [6,97].
The present strategy outlined above, however, suffers the
Rayleigh curse when estimating small stochastic signals:
LIGO’s present loss of η ≤ 0.23 [50] imposes a detection
horizon of σ 2 > η/2 ≈ 0.12 by Eq. (34), beyond which
it suffers the Rayleigh curse. The possible improvement
from using the optimal stochastic sensing protocol, which
we discuss below, in sensing astrophysical parameters �θ
for a given signal model can be calculated from Eq. (49).
We focus on astrophysical applications at kilohertz fre-
quencies since there, unlike at low frequencies, LIGO’s
present classical noise is a factor of 4 below the vacuum
shot noise [50], i.e., σ 2

p ∼ 0.13, and noise models predict
that it could be made as low as σ 2

p ∼ 0.05 in the future [98].
The resulting classical noise horizon (σ 2 > σ 2

p ) suffered by
the optimal protocol is thus up to 2.3 times further than
the loss horizon (σ 2 > η/2) suffered by preparing SMSV
states [99]. We focus on detecting stochastic signals within
this additional quantum-enhanced range.

The optimal stochastic sensing protocol involves prepar-
ing non-Gaussian states at the differential port and per-
forming non-Gaussian measurements. (We assume that we
still prepare a large coherent state at the common port.)
In particular, we consider photon counting directly in the
temporal basis of the gravitational-wave signal templates,

030311-20



STOCHASTIC WAVEFORM ESTIMATION. . . PRX QUANTUM 6, 030311 (2025)

{wk}∞k=1, as follows [3]. A compact binary coalescence
strain signal y(t) = h(t) may be decomposed as

h(t) = hdet-LF(t)+ hdet-HF(t)+ hstoc(t),

where hdet-LF(t) and hdet-HF(t) are low-frequency (pre-
merger) and high-frequency (merger and post-merger)
deterministic terms, respectively, and hstoc(t) is a stochas-
tic term. This stochastic term has an associated temporal
correlation function 〈hstoc(t)hstoc(t′)〉 = H(t, t′) which is
a priori nonstationary. If we assume Gaussianity, then,
by the Karhunen-Loéve theorem, we can further decom-
pose this stochastic process into a sum of orthonormal
temporal modes, hstoc(t) =∑∞

k=1 σknkwk(t), where {nk}∞k=1
are independent unit-normal-distributed random variables
and {σk}∞k=1 are the parameters of interest. Preparing non-
Gaussian states and photon counting in the basis {wk}∞k=1
could accelerate the search for stochastic sources beyond
LIGO’s present loss horizon discussed above. Note that
this is distinct from the “event-stacking” technique [100–
102] for aggregating information on the deterministic com-
ponent of post-merger signals, hdet-HF(t), from multiple
binary-neutron-star coalescences [103].

It is also possible to operate a gravitational-wave obser-
vatory to simultaneously estimate the mean and variance
as a test for unmodeled physics. In this scenario, the tem-
poral basis to measure in is chosen beforehand and both
the deterministic and stochastic components of the sig-
nal in each basis mode are unknown. For example, there
are degrees of freedom in our models of binary neutron
stars that are unconstrained by current data, and possi-
bly additional unmodeled physics that would make the
source either intrinsically stochastic or have unpredictable
variations over the astrophysical population. Also, for
black-hole events, we could accelerate tests for a stochastic
departure from general relativity using a large ensem-
ble of observed binary black-hole events. In either case,
by performing joint measurements to estimate σ from
the observation of many events with similar μ with a
single observatory, we could perform stronger assumption-
free tests for unmodeled physics. We assume here that
the stochastic component is uncorrelated between the M
different events in time.

To observe μ and σ simultaneously and optimally from
a single event, we would need a network of M spatially
separated observatories. The stochastic component would
be uncorrelated between distant observatories because,
e.g., the overlap reduction function between the two LIGO
sites is vanishing at kilohertz frequencies [97]. As dis-
cussed in Sec. VII A, the challenges in this spatial case
are in sending, storing, and receiving the quantum states
from each observatory to prepare joint states and perform
collective measurements. In Sec. VI D, we have assumed
asymptotically large M to find the optimal collective mea-
surement. Here, the number of observatories M is instead

likely small such that we do not know what the optimal
collective measurement is [104]. Our proposed collective
measurement, however, still attains the QFI with respect
to μ and is a factor of (M − 1)/M away from attaining
the QFI with respect to σ . Let us compare this to the local
strategy in Sec. VI C, which is a factor of 2 away from the
QFI of both μ and σ : if M = 2 (M = 3) [M = 4], then our
collective measurement is a factor of 2 more sensitive to μ
and simultaneously a factor of 1

( 4
3

) [ 3
2

]
more sensitive to

σ than the local strategy.

3. Axionic dark matter

Axions are a hypothetical wavelike dark-matter candi-
date that could also solve the strong CP-problem [11,12].
More generally, if axionlike particles exist, then it is pre-
dicted that they should weakly interact with photons at
the coupling rate gaγ γ . To search for axions, therefore, we
want to estimate gaγ γ at each frequency, where each fre-
quency corresponds to a possible mass for the axion. Many
experiments involving a microwave cavity in the presence
of a static magnetic field are searching for axions (see, e.g.,
Refs. [13,14,55,105–107]). Since the coherence time of the
axion is predicted to be short, the resulting displacement
of the microwave cavity mode would be stochastic and
without a preferred phase on longer timescales.

At a given frequency, this transformation is canonically
the symmetric case of the additive Gaussian noise channel
�noise

C

in Eq. (22), with 
C = diag
(
σ 2, σ 2

)
[108]. This is a

two-dimensional random-displacement channel with

�2D
σ (ρ̂) ≈ ρ̂ + σ 2

(
x̂ρ̂x̂ + p̂ρ̂p̂ − 1

2
{x̂2 + p̂2, ρ̂}

)
. (51)

We want to estimate σ since it is proportional to the cou-
pling constant gaγ γ at the given frequency (i.e., axion
mass), because the excess microwave power is propor-
tional to g2

aγ γ up to the local dark-matter density, magnetic
field strength, and cavity parameters [13,14,57,106]. Opti-
mizing the QFI with respect to σ thus maximizes the axion
scan rate, since the scan rate is proportional to the FI
integrated over all frequencies [108].

Suppose that the initial pure state encounters loss before
the encoding such that the total channel is �′

σ = �2D
σ ◦

�loss
η . The ECQFI of this noisy channel with respect to σ ,

with energy constraint 〈n̂〉 = N , is known to be [108]

I�′
σ ,N

Q (σ ) = 4
(
η + N

(
η + 2σ 2

)+ σ 2
)

(
η + σ 2

) (
N
(
η + 2σ 2

)+ σ 2 + 1
)

−−−→
N→∞

4
η + σ 2 ,

which is attained by a TMSV state with noiseless ancilla
(ηA = 0) in the high-energy limit. (This limit is simply
twice the one-dimensional case in Claim 3.) If ηA �= 0,
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however, then we show in Appendix D that the TMSV QFI
vanishes for σ 2 � ηA. Moreover, by Claim 1, all squeezed
states [109,110] are Rayleigh cursed, i.e., the QFI with
respect to σ converges to zero in the limit of σ → 0, pro-
vided that loss occurs on every mode. In general, we expect
to operate in this loss-dominated regime experimentally,
σ 2 � η, ηA, since the excess microwave power is small
compared to the cavity loss [109]. In this loss-dominated
regime, can we prepare non-Gaussian states instead?

Preparing Fock states for axion searches has been pre-
viously demonstrated [55] but without awareness of the
relation between the optimal Fock state and the ulti-
mate sensing limit. We establish this relation here. By
Appendix F 2, the QFI in the limit of σ → 0 is

IQ(σ = 0) = 4
(
〈x̂�̂⊥x̂〉 + 〈p̂�̂⊥p̂〉

)
, (52)

where �̂⊥ projects onto the null space of the state before
�2D
σ . For a Fock state |N 〉, Eq. (52) implies that the QFI is

IQ(σ = 0) = 4(1 − η)N (N + 1). The optimal N depends
on the loss η as discussed above, e.g., N = 8 for η = 0.1.
The optimal Fock state is better than the Gaussian states
but is again roughly a factor of e (4.3 dB) away from
the ECQFI. For an input vacuum or Fock state, the opti-
mal measurement is photon counting [95,107]. (Note that
here, while we include a large loss before the encoding, we
assume that no loss occurs after the encoding.)

Numerically, we observe that preparing finite-energy
GKP states can achieve a QFI of at least 36, which is at
least 90% of the ECQFI of 40 for σ = 10−3 and η = 0.1.
Similarly to the one-dimensional case, we conjecture that
higher-energy finite-energy GKP states can converge to the
ECQFI and are the optimal single-mode states for a given
large

〈
n̂
〉 = N and small σ � η. This means that non-

Gaussian states beyond Fock states could further accelerate
the search for axionic dark matter.

VIII. CONCLUSIONS AND OUTLOOK

We now draw our main conclusions, summarize our
contributions to the literature, discuss the experimental
practicality of our work, and look to the future of stochastic
waveform estimation.

A. Conclusions

We have found the optimal protocol for stochastic wave-
form estimation using a linear quantum device. We have
simplified the problem to the single-variable estimation
of the excess noise in each temporal mode. For realistic
losses, all Gaussian protocols exhibit the Rayleigh curse
and fail to attain the ultimate precision limit. Instead,
we have shown numerically that it is optimal to prepare
non-Gaussian states such as finite-energy GKP states. For
small signals above the classical noise floor, this non-
Gaussian protocol outperforms all Gaussian protocols by

orders of magnitude. We have also shown that a joint
non-Gaussian measurement protocol is optimal for simul-
taneously estimating the mean and variance of a stochastic
signal. Finally, we have demonstrated how our results may
be applied to enhance searches for geontropic fluctua-
tions from quantum gravity, stochastic gravitational-wave
signals, and axionic dark matter.

B. Summary of results

For ease of reference, we now summarize our technical
contributions to the literature in Table I and as follows:

(1) In Claim 1, we have proved a sufficient and nec-
essary condition for overcoming the Rayleigh curse
with Gaussian states. This general result applies
beyond our specific encoding channel of random
displacements and the context of stochastic wave-
form estimation. In Sec. V D, we have applied this
result to prove that all squeezed states with noisy
ancilla are cursed for sensing random displacements
in the presence of loss on all modes. This establishes
that to beat the vacuum state in the limit of vanishing
signal, we must prepare non-Gaussian states.

(2) In Claims 2 and 3 we have calculated the ultimate
limit, the ECQFI, on sensing random displacements
in the lossless and lossy cases, respectively. We
have used a purification-based approach given in
Appendix C to accomplish this. In the lossless case,
we have found that preparing an SMSV state is opti-
mal given a constraint on the average energy per
mode of the initial state; whereas, in the lossy case,
we have found that preparing a TMSV state with
noiseless ancilla is optimal in the high-energy limit.

(3) In Claim 4, we have calculated the QFI and opti-
mal measurement for any random unitary channel
acting on a Hilbert space, not just for random dis-
placements of a bosonic mode, in the limit of van-
ishing signal. We have generalized this result in
Appendix F to sensing the weak decay rate from any
Lindbladian master equation.

(4) In Sec. V F, we have analyzed the performance of
non-Gaussian states. We have proved that preparing
Fock states and directly photon counting beats the

TABLE I. Summary of QFIs for different noise channels and
initial states for single-parameter estimation of the variance. The
QFIM for multiparameter estimation of the mean and variance
for vacuum input is given in Eq. (44).

Initial quantum state

Noise channel Vacuum Gaussian Non-Gaussian

Lossless Eq. (20) Claim 2 Sec. V C
Lossy Sec. IV B Claim 1 Claim 3
Classical noise Eq. (23) Eqs. (38) and (40) Eq. (39)
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vacuum state but misses the ECQFI by roughly 4.3
dB. We have shown numerically that finite-energy
GKP states approach the ECQFI without requiring
a noiseless ancilla like a TMSV state. The optimal
non-Gaussian state is likely not unique, as we have
also found a variational ansatz, sparse superposi-
tions of finitely many Fock states, using numerical
methods given in Appendix I. These sparse states
are similar to binomial error correcting codes, out-
perform the Fock states, and approach the ECQFI
if the energy of the input state is unconstrained.
In Appendix I, we discuss that finding the optimal
state is a biconvex-optimization problem and that
the alternating convex search, used previously to
efficiently find the optimal state, does not work in
this case.

(5) In Sec. V G, we have considered sensing random
displacements in the presence of classical noise.
We have divided the classical noise into its com-
ponents parallel and perpendicular to the signal. In
the presence of parallel classical noise and no loss,
we have shown that preparing an SMSV state is
optimal. In the additional presence of loss, we have
shown that preparing a GKP state instead is optimal.
Meanwhile, in the presence of perpendicular classi-
cal noise and no loss, we have shown that preparing
a GKP state is not only optimal but can recover
the ultimate limit from the case with no classical
noise. The above results for GKP states also hold
for TMSV states but only if we assume noiseless
ancilla, i.e., that the ancilla is free from classical
noise and loss.

(6) Finally, in Sec. VI, we have considered the case in
which the mean is also unknown, such that the mean
and variance of the probability distribution behind
the random-displacement signal need to be simul-
taneously estimated. We have considered a vacuum
input state and shown that a number-resolving mea-
surement cannot distinguish the mean from the vari-
ance of the signal. Instead, we have shown that a
joint measurement of many independent copies of
the final state is required to saturate the QFIM, while
an adaptive protocol using separate measurements
remains a factor of 2 below the QFIM. We have
proved in Claim 5 that a similar collective measure-
ment saturates the QFIM for any random unitary
channel.

C. Experimental practicality

We now address the practicality of our work. As we
discuss in Sec. VII A, there are several challenges in
preparing the non-Gaussian states and implementing the
non-Gaussian measurements that we propose. Thus, these
protocols may take some time to be realized. We believe,

however, that there are clear paths to addressing these
challenges and that the time that it may require to over-
come them does not diminish the importance of our results.

Preparing the optimal Fock state and photon count-
ing can outperform all Gaussian states and get us within
roughly 4.3 dB of the ultimate sensing limit, the ECQFI,
as we have discussed in Sec. V F. For example, the optimal
Fock state contains eight photons given a loss of 10%. This
is likely achievable for stochastic waveform estimation
in the microwave domain. In superconducting microwave
cavities, Fock states have already been generated with up
to 100 photons [54] and, in axion searches, the benefits of
Fock states of four photons have already been shown [55].
This work adds valuable context to the prior experimental
results, establishing where their results stand with respect
to the ECQFI for stochastic waveform estimation.

To attain the ultimate limit and beat the Fock states by
up to roughly 4.3 dB, we need to prepare more compli-
cated non-Gaussian states such as GKP states or sparse
superpositions of finitely many Fock states (which are
similar to binomial-code states). Progress to this end is
also being made experimentally in the microwave regime,
motivated by using these states in quantum computing
and error-correction applications. As we have discussed in
Sec. V F, GKP states and binomial-code states have been
prepared experimentally in a superconducting microwave
cavity using controlled displacements with a qubit [59].
Alternatively, as we have discussed in Sec. IV C, it may
be possible to reach the ultimate limit by preparing TMSV
states and performing Gaussian operators followed by
photodetection provided that the loss on the ancilla can
be engineered to be sufficiently small compared to the
classical noise and the signal.

Finally, we wish to make an analogy to the devel-
opment of squeezing for gravitational-wave observato-
ries. Four decades have passed from when squeezing
was first proposed for LIGO [111] to today, where we
measure 5 dB of frequency-dependent squeezing [112].
It may take decades more to produce the 10-dB broad-
band noise reduction stated for the third generation of
gravitational-wave observatories [113,114]. The original
squeezing proposal helped catalyze the development of
LIGO and gravitational-wave astronomy and led to the
maturity of squeezing today. Stochastic waveform esti-
mation provides alternative and parallel science cases to
deterministic waveform estimation that are relevant to both
particle physics and astrophysics. This work has estab-
lished the goals and benchmarks to gauge past and future
demonstrations of stochastic waveform estimation. This
is a valuable contribution given the statistical subtleties
in sensing random signals and in systematically defining
background noise and degradation processes. While the
full extent of our results may not be immediately realized
experimentally, many of the preliminary state-preparation
and readout technologies have been demonstrated and
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our results motivate and provide context to their future
development. Our work informs the design of future exper-
iments to maximally benefit from state preparation and
optimally extract information.

D. Outlook

There are many related open questions to consider in the
future. While we have considered the asymptotic limit and
maximum likelihood estimation, it remains to be under-
stood whether we can obtain faster convergence to the
fundamental limit or better performance when restricted to
a small number of measurements. It would also be interest-
ing to understand the relation with the Bayesian-estimation
problem in which, using the notation from Eq. (15), α is
instead being estimated and p(α) is its prior distribution.
We note that there is no immediate relation between this
Bayesian problem and the problem of estimating σ that we
consider. For example, in the vacuum case with a Gaus-
sian prior [115,116], quadrature measurement p̂ remains
asymptotically optimal for estimating deterministic dis-
placements, whereas here I p̂

C(σ = 0) = 0. It remains to
be understood whether a subtler connection exists between
this Bayesian problem and our estimation problem.

Further open questions include the impact of differ-
ent noise channels, determining the optimal states for
fixed finite

〈
n̂
〉 = N , and the complete estimation of a

non-Gaussian stochastic waveform since, e.g., estimating
the fourth-order cumulant of a quantum state is of inter-
est to testing nonclassicality [117] and quantum gravity
[118–120].
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APPENDIX A: PROOF OF CLAIM 1

Here, we prove Claim 1 by combining a known result
about the eigenvalues of the density matrix and the
Williamson decomposition of a Gaussian state [133].

Since ∂σ ρ̂ → 0 as σ → 0, the optimal measurement
basis in this limit is the eigenbasis of the density matrix
ρ̂ such that the QFI is nonvanishing if and only if there
exists an eigenvalue of ρ̂ proportional to σ 2 [40]. We
therefore need to find a condition on the symplectic eigen-
values of 
 that is equivalent to this condition on the
eigenvalues of ρ̂. For an M -mode Gaussian state, the
Williamson decomposition has the eigenvalues

∏M
i=1 λki

and eigenstates {⊗M
i=1 Ŝ (ri) |ki〉}k1···kM , where Ŝ (r) is the

single-mode squeezing operator and |ki〉 is a Fock state
(potentially of a combination of the original modes, e.g.,
a TMSV state). The symplectic eigenvalues associated
with the ith mode are 1

2 + n̄i, such that the correspond-
ing eigenvalues are λki = (1/(1 + n̄i))(n̄i/(1 + n̄i))

ki with
degeneracy 2. Since the QFI is not Rayleigh cursed if and
only if there exists some ki such that λki ∝ σ 2 [40], there-
fore, the QFI is nonvanishing if and only if there exists
some mode i such that n̄i ∝ σ 2 or, equivalently, a symplec-
tic eigenvalue equal to 1

2 + kσ 2 for some constant k (not to
be confused with ki).

We remark that for a single-mode Gaussian state, this
result can be seen directly from the QFI expression: if
∂σ
 → 0, then the first term in Eq. (19) also vanishes. The
second term in Eq. (19), however, is nonzero if and only if
γ = 1 − βσ 2, which is equivalent to the above condition
on the symplectic eigenvalues.
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Here, we have assumed that the noisy channel is analytic
at σ = 0 such that we may expand it in a Taylor series. This
will usually be the case. For nonanalytic noisy channels,
however, this result can be extended: the QFI is nonvan-
ishing if and only if there exists a symplectic eigenvalue
equal to 1

2 + kσ l with 1 < l ≤ 2 [40].

APPENDIX B: OTHER NOISE CHANNELS

We have focused on the case of a noise channel with
known parameters occurring before the encoding channel.
In this appendix, we briefly discuss noise channels occur-
ring after the encoding channel and explore an example of
what happens when the parameters of the noise channel are
unknown.

1. Noise occurring after the encoding

Noise occurring after the encoding can be divided into
two types: (1) noise associated with or “baked into” the
acquisition of the signal or (2) noise associated with the
later measurement. In the former case, it is not possi-
ble to insert an arbitrary parameter-independent “control”
channel between the encoding and noise channels to mit-
igate the noise. In the latter case of “measurement noise,”
however, it is possible to entirely overcome the noise
by implementing a suitable control channel between the
encoding and measurement noise channels.

Let us illustrate this point that measurement noise can
be overcome for sensing σ in the case of preparing an
SMSV initial state with

〈
n̂
〉 = N . Note that in the noiseless

case, the optimal measurement after the encoding channel
is to first antisqueeze and then perform a number-resolving
measurement. Here, we assume that we still antisqueeze
but then perform a different, fixed, POVM that can be
decomposed into a measurement noise channel followed
by a number-resolving projective measurement. In, e.g.,
an optical system, our measurement apparatus is a pho-
todetector and we consider two relevant noise models:
detection loss and dark counts. Photodetection with detec-
tion loss is modeled as a loss channel �loss

ηmeas
followed

by a projective number measurement. Photodetection with
dark counts is modeled as the noise channel �dark

Nmeas
fol-

lowed by a projective number measurement, where �dark
Nmeas

is defined as

�dark
Nmeas

(ρ̂) =
∞∑

n=0

K̂nρ̂K̂†
n , K̂n =

∞∑

m=0

√
pth(m)|n + m〉〈n|,

where pth(m) = (1/(1 + Nmeas)) (Nmeas/(1 + Nmeas))
m is

the number distribution of a thermal state with average
number Nmeas. The results of measuring n̂ on�dark

Nmeas
(ρ̂) are

equivalent to convolving the results of measuring n̂ on ρ̂
with pth. Intuitively, �dark

Nmeas
adds m particles to the quan-

tum state with probability pth(m) independent of the state.
In comparison, it is unsuitable to model dark counts as an

isotropic classical noise channel �noise

C,meas

with 
C,meas =
diag

(
σC,meas, σC,meas

)
, since �noise


C,meas
both adds and sub-

tracts particles at a rate that depends on the quantum state
due to Bose enhancement.

We first consider the impact of measurement noise in the
absence of any additional control channels. In the noiseless
case, given an initial SMSV state, the QFI is IQ(σ ) = 4ξN
in the limit of σ � 1. In this limit, almost all of the CFI
from the projective number measurement after antisqueez-
ing comes from the n̂ = 1 single-particle detection proba-
bility, p (1) ≈ ξNσ

2. In the case of measurement loss ηmeas,
e.g., detection loss for an optical system, the total chan-
nel before the projective number measurement is �′

σ =
�loss
ηmeas

◦�antisqz ◦�σ , where �antisqz is the antisqueezing
unitary channel for the given N . The single-particle detec-
tion probability is now p (1) ≈ (1 − ηmeas) ξNσ

2, such that
the CFI from the subsequent projective number measure-
ment falls to I n̂

C(σ ) = (1 − ηmeas) 4ξN but the Rayleigh
curse is not introduced. This is unlike loss occurring before
the antisqueezing operation, which does introduce the
Rayleigh curse. In contrast, the Rayleigh curse will arise
in the case of the dark-count-measurement noise chan-
nel. In this case, the total channel before the projective
number measurement is �′

σ = �dark
Nmeas

◦�antisqz ◦�σ . The
convolved probability distribution of number measure-
ments is then p(0) = (1 − ξNσ

2)/(1 + Nmeas) and p(n) =
N n−1

meas(Nmeas + ξNσ
2)/(1 + Nmeas)

n+1 for n ≥ 1 such that
the CFI is I n̂

C(σ ) = 4ξ 2
Nσ

2/
(
1 − ξNσ

2
) (
ξNσ

2 + Nmeas
)
,

which vanishes in the limit of σ → 0 for fixed
ξN , Nmeas > 0.

We now show that there exists, in theory, a unitary
that allows us to recover the noiseless QFI. After the
antisqueezing operation, applying any unitary channel
�swap that swaps the Fock states |1〉 and |k〉 for some
k � 1 and stabilizes the vacuum |0〉 (up to a phase) will
recover the noiseless QFI in the limit of large enough k
as proved below. Intuitively, this control unitary channel
�swap amplifies the signal to make it more tolerant to loss
and distinguish it from dark counts. In the case of measure-
ment loss, e.g., detection loss for an optical system, the
total channel before the projective number measurement
is now �′

σ = �loss
ηmeas

◦�swap ◦�antisqz ◦�σ . The probabil-
ity of not detecting zero particles is now

(
1 − ηk

meas

)
ξNσ

2,
keeping only the relevant σ 2 terms in the limit of σ � 1,
such that the CFI from the subsequent projective number
measurement is I n̂

C(σ ) = 4ξN
(
1 − ηk

meas

)
, which recovers

the noiseless QFI of 4ξN in the limit of k → ∞. In the case
of the dark-count-measurement noise, the total channel
before the projective number measurement is now �′

σ =
�dark

Nmeas
◦�swap ◦�antisqz ◦�σ . The probability of detecting

k or more particles after this channel is

p(n̂ ≥ k) = ξNσ
2

[

1 −
(

Nmeas

Nmeas + 1

)k
]

+
(

Nmeas

Nmeas + 1

)k
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in the limit of ξNσ
2 � 1. The CFI from detecting k or more

particles is then

I n̂
C =

4ξ 2
Nσ

2
[

1 −
(

Nmeas
Nmeas+1

)k
]2

ξNσ 2

[
1 −

(
Nmeas

Nmeas+1

)k
]

+
(

Nmeas
Nmeas+1

)k
,

for fixed σ , N , n̄ > 0. Since, for fixed ξN , σ , Nmeas and
ε > 0, ∃K such that (Nmeas/(Nmeas + 1))k < ε for k > K ,
the CFI from number measurement recovers the noiseless
QFI of 4ξN in the limit of k → ∞. We defer to future work
to find possible ways to implement suitable control unitary
channels such as �swap.

While we have assumed a specific fixed POVM above,
e.g., a noisy photodetector, the results hold more gener-
ally [134–136]. Any fixed POVM that is modeled as a
loss or dark-counts channel followed by a projective mea-
surement will have the above limitations. For any such
POVM, there exists an analogous control unitary channel
that can overcome the measurement noise, where the par-
ticular control unitary channel needed may depend on the
POVM [135,136].

In the case of a deterministic displacement channel, it is
known that a phase-sensitive amplifier after the encoding
can mitigate subsequent measurement loss in the high-gain
limit. This is sometimes called a “Caves’s amplifier” in
the context of gravitational-wave observatories [111]. In
our case, however, a phase-sensitive amplifier after the
encoding would introduce the Rayleigh curse and should
be avoided.

2. Unknown loss

Here, we discuss the implications of not precisely know-
ing the loss η that the state ρ̂ experiences via the loss
channel�loss

η introduced in Sec. IV B. We illustrate this for
the input vacuum case and an indeterminate loss occurring
after the encoding but before the measurement.

Suppose that the loss η follows some probability distri-
bution p(η). By the central limit theorem, asymptotically,
this distribution approaches p(η) ∼ N (μη, σ 2

η ) with some
mean μη and standard deviation ση. The state after this
indeterminate loss is

�indet.
μη ,ση(ρ̂) =

∫ 1

0
dη �loss

η (ρ̂)p(η).

We want to know whether this will introduce the Rayleigh
curse in the relevant regime of ση � 1 where the loss is
not precisely known but is well constrained.

The nth moment of a weighted average of distribu-
tions is the weighted average of their nth moments. The
first moment is zero for the vacuum case. The second
moment after �loss

η is linear in η such that the second

moment after �indet.
μη ,ση equals that after �loss

μη
, e.g., the sig-

nal term is (1 − μη)σ
2. The loss indeterminacy ση does

not affect the first two moments, so, it must be a non-
Gaussian perturbation of the third, fourth, and higher-order
moments.

For the vacuum case, the final state after �indet.
μη ,ση ◦�σ

has the second moment 〈p̂2〉 = ς2 and fourth moment
〈p̂4〉 = 3ς4 + 3σ 2σ 2

η , where ς2 := 1
2 + (1 − μη)σ

2. The
fourth-order cumulant 3σ 2σ 2

η indicates that the distribution
has slightly fatter tails than a Gaussian. Numerically, the
CFI from number measurement shows that this perturba-
tion is negligible when μη is known and ση is small. For
example, an indeterminacy of ση/μη = 10% leads to an
O(10−4) fractional change in the CFI with respect to σ .
By convexity, this implies that the QFI also changes neg-
ligibly. If we also do not know μη, then the CFIM with
respect to μη and σ is not singular and thus they can be
estimated simultaneously.

3. Coarse-grained number-resolving measurements

Realistic measurements are unable to resolve infinitely
many different particle numbers. We now consider a
coarse-grained number-resolving measurement that can
only distinguish between zero counts (|0〉〈0|) and nonzero
counts (Î − |0〉〈0|), but cannot distinguish between, e.g.,
one or two particles. Suppose that the initial state is vac-
uum and there is no classical noise. Then, by Eq. (21),
the probabilities of these two outcomes are p(n = 0) =
1/

√
σ 2 + 1 and p(n ≥ 1) = 1 − p(n = 0). By Eq. (18),

the CFI is thus

IC(σ ) = 1
(
σ 2 + 1

)5/2 + 1
(
σ 2 + 1

)2 ,

which achieves the QFI in Eq. (20) in the vanishing-signal
limit of σ → 0 but not generally for fixed σ > 0. This is
because all of the information in the vanishing-signal limit
comes from the single-particle probability p(n = 1), as can
be seen from the summand of the CFI in Eq. (18),

[∂σp(n)]2

p(n)
= (2n)! σ 2n−2

(
σ 2 − 2n

)2

4n(n!)2
(
σ 2 + 1

)n+ 5
2

,

which vanishes in the limit of σ → 0 for n �= 1 but
saturates the QFI for n = 1.

Similarly, for a Fock state |N 〉, all of the information
comes from the p(n = N + 1) probability in the vanishing-
signal limit. For example, this means that for a loss of
η = 0.1, if we prepare the optimal |8〉, then we need to at
least distinguish nine or more particles from eight or fewer
particles to have nonzero sensitivity. This is more experi-
mentally difficult than achieving the coarse-grained zero-
or-nonzero measurement above. Alternatively, we could
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first perform a unitary that maps, e.g., |N 〉 �→ |0〉 and
|N + 1〉 �→ |1〉 and then use the coarse-grained zero-or-
nonzero measurement above, although implementing such
a unitary may be challenging.

More generally, the fact that coarse-grained binary mea-
surements, i.e., those with only two outcomes, suffice to
saturate the QFI in the vanishing-signal limit appears to be
a general property of Rayleigh-cursed problems. As shown
in Refs. [38,40], all the information about σ is encoded
in eigenspaces of ρ̂ (σ ), the eigenvalues of which go as
σ 2. Hence, the QFI is saturated by a binary measurement
that differentiates between ρ̂ (σ = 0) and the orthogonal
eigenspace(s) that go as σ 2. In particular, Claim 1 implies
that for Rayleigh-cursed Gaussian states, the optimal mea-
surement corresponds to a symplectic operation followed
by a coarse-grained number-resolving measurement. For
example, the optimal measurement for a TMSV state
corresponds to a symplectic operation that diagonalizes
ρ̂ (σ = 0) followed by a coarse-grained number-resolving
measurement of one of the modes.

However, for more complex scenarios such as GKP
states and for finite values of σ , binary measurements may
not be sufficient and the effect of a realistic counting model
is unknown. As we have explained in Sec. V F, we do not
know if or how the required measurement for GKP states
relates to the process to generate them. This means that we
do not know whether a number-resolving measurement is
required to implement the measurement for the GKP state,
let alone what the effects of the realistic model of count-
ing might be. We leave this to future work once the GKP
measurement is first understood.

APPENDIX C: PURIFICATIONS AND THE ECQFI

To prove Claims 2 and 3 about the ECQFI, we first
review the established method that we use to optimize over
the initial states.

1. Review of purifications

Consider an initial pure state |ψ〉 and a nonunitary chan-
nel �θ such that the final state is ρ̂(θ) = �θ(|ψ〉〈ψ |). The
channel�θ can be purified (also called dilated) to a unitary
process Ûθ acting on |ψ〉 ⊗ |ϕ〉 such that the final state is
ρ̂(θ) = TrA[Ûθ (|ψ〉 ⊗ |ϕ〉)] for all |ψ〉 and θ . Note that
the ancilla |ϕ〉 is independent of |ψ〉 and θ but depends on
the purification Ûθ chosen. The purification of �θ to Ûθ

should not be confused with the purification of a mixed
state or with the ECQFI discussed below.

The choice of purification, however, is not unique. By
Uhlmann’s theorem for the quantum fidelity, the QFI for
a fixed initial state |ψ〉 is the infimum of the QFI over all
possible purifications Ûθ of �θ [43,44,108,137]

I�θ (|ψ〉〈ψ |)
Q (θ) = inf

Ûθ
IÛθ (|ψ〉⊗|ϕ〉)

Q (θ). (C1)

Here, the QFI of the unitary process Ûθ is 4Var[Ĥ ] for
all θ , where Ĥ = −iÛ†

θ
˙̂Uθ is the Hermitian generator of

local displacements in θ and the variance is calculated with
respect to the pure initial state |ψ〉 ⊗ |ϕ〉 [138]. Using this
fact, then Eq. (C1) becomes

I�θ (|ψ〉〈ψ |)
Q (θ) = 4 inf

Ûθ
Var|ψ〉⊗|ϕ〉[Ĥ ],

where |ϕ〉 and Ĥ are determined by the purification Ûθ

of �θ .
The CQFI of �θ in Eq. (28), which optimizes over the

initial state, is then given by

I�θ ,no ancilla
Q (θ) = 4 sup

|ψ〉
inf
Ûθ

Var|ψ〉⊗|ϕ〉[Ĥ ].

Exchanging the order of maximization and minimization
above results in an upper bound on the CQFI of �θ .
Remarkably, in Ref. [139] it has been shown that this upper
bound is exactly the ECQFI of �θ in Eq. (29); hence

I�θQ (θ) = 4 inf
Ûθ

sup
|ψ〉

Var|ψ〉⊗|ϕ〉[Ĥ ]. (C2)

Thus, to attain the ECQFI, it suffices to find a purification
Ûθ for which the following upper bound is tight:

I�θQ (θ) ≤ 4 sup
|ψ〉

Var|ψ〉⊗|ϕ〉[Ĥ ]. (C3)

To find such a purification, we will use the following tech-
nique of introducing a “hiding” unitary Ûhide [18]. Suppose
that we have a purification Ûenc. of �θ . We can generate
a family of related purifications Ûθ = ÛhideÛenc. by per-
forming any θ -dependent unitary transformation Ûhide on
the ancilla, since the ancilla is traced out to recover ρ̂(θ).
Intuitively, this hiding unitary Ûhide is meant to remove (or
hide) the excess information about θ present in the ancilla
after Ûenc. to make Eq. (C3) tight.

2. Proof of Claim 2

Here, we prove Claim 2 about the lossless case by using
the above purification method with a hiding unitary.

We purify the channel �σ by introducing an ancillary
mode 2 prepared in a vacuum state, such that the result-
ing encoding unitary is a conditional displacement Ûenc. =
exp(−iσ Ĥ enc.) with the generator Ĥ enc. = √

2x̂1x̂2. We
also include a hiding unitary Ûhide = exp(−iσ Ĥ hide) such
that the overall purification is Ûσ = ÛhideÛenc.. Here,
Ĥ hide = 1

2 g
(
x̂2p̂2 + p̂2x̂2

)
is a squeezing Hamiltonian and

g is a real parameter over which to minimize to obtain a
tight upper bound in Eq. (C3).
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The Hermitian generator for the overall purification Ûσ

is

Ĥ = Ĥ enc. + Û†
enc.Ĥ hideÛenc..

=
(√

2 +
√

2gσ
)

x̂1x̂2 + g
2
(
x̂2p̂2 + p̂2x̂2

)
.

The QFI of Ûσ |ψ〉 ⊗ |ϕ〉 is therefore

4Var[Ĥ ] = 2
(√

2 +
√

2gσ
)2 〈

x̂2
1

〉+ 2g2, (C4)

where we have assumed that
〈
x̂1
〉 = 0 without loss of gen-

erality. Here, since mode 2 is in a vacuum state, we have
also used the fact that

Var
[
x̂2p̂2 + p̂2x̂2

] = 2. (C5)

Minimizing the QFI in Eq. (C4) over g, we derive the
upper bound to the ECQFI in Eq. (33). This equals the QFI
from preparing an SMSV state by Eq. (19).

3. Proof of Claim 3

Here, we prove Claim 3 about the lossy case by using
a similar purification method to the lossless case above.
Our choice of hiding unitary to handle the loss channel
was inspired by the proof of Eq. (31) for the deterministic
case [18].

We purify the total noisy channel �′
σ = �σ ◦�loss

η as
follows. The loss channel �loss

η is purified to the following
beam-splitter unitary between mode 1 and some ancillary
mode 3 that starts in vacuum:

Ûη = exp[i arcsin(
√
η)(â†

1â3 + â†
3â1)]

= exp[i arcsin(
√
η)(x̂1x̂3 + p̂1p̂3)].

The encoding channel �σ is again purified to Ûenc. =
exp(−iσ Ĥ enc.) with Ĥ enc. = √

2x̂1x̂2 and mode 2 starting
in vacuum. We also include two hiding unitaries: Ûhide,1 =
exp(−iσ Ĥ hide,1) with Ĥ hide,1 = g1x̂2x̂3, which removes the
excess information due to the purification of the loss,
and Ûhide,2 = exp(−iσ Ĥ hide,2) with Ĥ hide,2 = 1

2 g2(x̂2p̂2 +
p̂2x̂2), which again removes the excess information due to
the purification of the random displacement. Here, g1 and
g2 are parameters to be minimized over again to obtain a
tight bound.

The overall unitary is thus

Ûσ = Ûhide,2Ûhide,1Ûenc.Ûη,

the Hermitian generator of which is

Ĥ = Û†
ηÛ

†
enc.Û

†
hide,1Ĥ hide,2Ûhide,1Ûenc.Ûη

+ Û†
ηÛ

†
enc.Ĥ hide,1Ûenc.Ûη + Û†

ηĤ enc.Ûη,

where there is no term associated with Ĥ η, since Ûη is
independent of σ . This expression then simplifies to

Ĥ = g2

2
(
x̂2p̂2 + p̂2x̂2

)

+ (g2σ + 1)
(√

2η + g1
√

1 − η
)

x̂3x̂2

+ (g2σ + 1)
(√

2(1 − η)− g1
√
η
)

x̂1x̂2.

The QFI of Ûσ |ψ〉 ⊗ |ϕ〉 is therefore

4Var[Ĥ ] = 2g2
2 + f (g1) (g2σ + 1)2

where, by Eq. (C5),

f (g1) =
(√

2η + g1
√

1 − η
)2

+ 2〈x̂2
1〉
(√

2(1 − η)− g1
√
η
)2

.

Minimizing over the free parameters of the hiding uni-
taries, g1 and g2, we find that

4Var[Ĥ ] = min
g1,g2

[
2g2

2 + f (g1) (g2σ + 1)2
]

= min
g2

[

2g2
2 + 4

〈
x̂2

1

〉

(1 − η)+ 2η
〈
x̂2

1

〉 (g2σ + 1)2
]

= 4

2(η + σ 2)+ (1 − η)
〈
x̂2

1

〉−1 .

Using the optimal value of 〈x̂2
1〉 for a given constraint〈

n̂
〉 = N leads to the upper bound of Eq. (36). This opti-

mal value of 〈x̂2
1〉 for a fixed N would correspond to the

state after the loss but before the encoding being an SMSV
state, but there is no such state that becomes an SMSV
state after a loss. Note that while, e.g., Schrödinger’s cat
states approach 〈x̂2

1〉 = 2N for large N too, the relation
〈x̂2

1〉 < ξN holds for any fixed N and any non-SMSV state.
This bound, therefore, is not tight for a fixed finite N , as
preparing an SMSV state does not saturate it. In the limit
of N → ∞, however, this bound proves the ECQFI in
Eq. (35), which is saturated asymptotically by TMSV (see
Appendix D) and thus is tight.

APPENDIX D: TWO-MODE SQUEEZED VACUUM

Here, we analyze the QFI from preparing a TMSV state
given different noise models (loss and classical noise) and
different encoding channels (one-dimensional and two-
dimensional random-displacement channels).

In Ref. [37], it has been shown that the QFI of an M -
mode Gaussian state with the parameter encoded in the
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covariance matrix 
 is given by the following formula:

IQ(σ ) = 2Tr
[
(∂σ
)(4
 ⊗
 − ω ⊗ ω)−1(∂σ
)

]
, (D1)

where, if 
 is written in the quadrature basis of
(x̂1, · · · , x̂M , p̂1, · · · , p̂M )

T, then the commutator matrix is
given by ω = [ 0 1

−1 0

]
, where 1 is the M × M identity

matrix. This result generalizes Eq. (19) for single-mode
Gaussian states.

For the one-dimensional random-displacement channel
in Eq. (15) preceded by a loss channel, the QFI of a TMSV
state with noisy ancilla ηA > 0 in the high-energy limit
N → ∞ and with σ � 1 is given by Eq. (D1) as

IQ(σ ) = 2(1 − ηA)σ
2(η + ηA − 2ηηA)

2

ξ + σ 2(η + ηA − 2ηηA)3
, (D2)

where

ξ = 2(1 − η)ηηA
(
η2(2(ηA − 1)ηA + 1)− 2ηη2

A + η2
A

)
.

Attaining this QFI requires first antisqueezing and then,
in general, applying a beam splitter followed by number-
resolving measurements of the two modes [37]. For any
σ > 0 and with noiseless ancilla (ηA = 0), the QFI in
Eq. (D2) converges to the ECQFI in Eq. (35) in the high-
energy limit. For example, in Fig. 4, we use the full form
of the QFI for any σ , η, ηA, and N , which is too verbose to
provide here but is found with the same method.

In comparison, for the two-dimensional random-
displacement channel in Eq. (51) preceded by a loss chan-
nel, the high-energy QFI for a TMSV state with noisy
ancilla is given by Eq. (D1) as

IQ(σ ) = 4(1 − ηA)σ
2

(
η + σ 2

) [
(1 − η)ηA + (1 − ηA)σ 2

] . (D3)

For 0 < ηA, σ 2 � η, the two-dimensional encoding TMSV
QFI in Eq. (D3) with ancilla loss ηA is approximately twice
the one-dimensional encoding TMSV QFI in Eq. (D2) with
ancilla loss ηA/2. In either case, the TMSV QFI attains
the ECQFI at high energy if ηA � σ 2, η but vanishes if
σ 2 � η, ηA.

We now briefly analyze the perpendicular classical
noise case discussed in Appendix J. Consider the one-
dimensional random-displacement channel preceded by a
perpendicular classical noise channel that adds σx to the
system and σx,A to the ancilla. Let us first consider the
case of noiseless ancilla, i.e., σx,A = 0. Interestingly, for
any

〈
n̂
〉 = N per mode and any amount of perpendicular

noise σx > 0, the QFI is

IQ(σ = 0) = 8N (N + 1)
2N + 1

−−−→
N→∞

4N , (D4)

which does not exhibit the Rayleigh curse. Intuitively,
for any N , there exists a symplectic transformation of ρ̂,

the state after the encoding channel, to a pair of modes
such that one of them is completely decoupled from
the perpendicular noise but nevertheless contains some
information about the signal. An optimal measurement,
therefore, would be to apply this symplectic transforma-
tion to ρ̂ and then perform a number measurement of
the perpendicular-noise–free mode. In the quadrature basis
of (x̂S, x̂A, p̂S, p̂A)

T, where the system S and ancilla A are
entangled, the covariance matrix of ρ̂ is


 = 1
2
1 +

[
σ 2

x + N
√

N (N + 1)√
N (N + 1) N

]

⊕
[

σ 2 + N −√
N (N + 1)

−√
N (N + 1) N

]
.

After performing a suitable antisqueezing operation, the
inverse of the two-mode squeezing unitary that prepares
the TMSV state from vacuum, the covariance matrix
becomes


 = 1
2
1 + 1

2
σ 2

x

[
N + 1 −√

N (N + 1)
−√

N (N + 1) N

]

⊕ 1
2
σ 2
[

N + 1
√

N (N + 1)√
N (N + 1) N

]
.

The collective mode with annihilation operator âdec =
(1/

√
2N + 1)

(√
NâS + √

N + 1âA

)
, therefore, is com-

pletely decoupled from the perpendicular noise (σ 2
x ) yet

remains coupled to the signal (σ 2). The covariance matrix
of this perpendicular-noise–free mode is


dec = 1
2
1 + diag

(
0, 2σ 2 N (N + 1)

2N + 1

)
,

such that a number measurement of this mode attains the
QFI in Eq. (D4). This protocol is reminiscent of the idea
of displacement-noise–free interferometry in which there
exist modes unaffected by displacement noise but that nev-
ertheless contain information about the signal [140–142].

We now consider the case of noisy ancilla, i.e., σx,A > 0.
Here, however, the QFI as σ → 0 exhibits the Rayleigh
curse by Claim 1 for a fixed value of N , since, for all
i, n̄i = ci(σx, σx,A)+ O(σ 2) for some ci(σx, σx,A) > 0 (see
Appendix A). For a fixed finite signal σ > 0 and any
fixed σx and σx,A, the QFI in Eq. (D1) attains the noise-
less ECQFI of 2/σ 2 in the high-energy limit of N → ∞
particles per mode.

Finally, we elaborate on the relation between a TMSV
state with noiseless ancilla and GKP states in the high-
energy limit. The infinite-energy TMSV pure state is the

030311-29



JAMES W. GARDNER et al. PRX QUANTUM 6, 030311 (2025)

following unnormalized state:

∫ ∞

−∞
dx |x̂S = x〉|x̂A = x〉 =

∫ ∞

−∞
dp |p̂S = p〉|p̂A = −p〉,

where |x̂j = x0〉 (|p̂j = p0〉) is the position (momentum)
eigenstate of mode j at x0 (p0). We observe that deter-
ministic or random displacements along p̂S keep the state
inside the code space of

{|x̂S = x〉|x̂A = x〉}x, where deter-
ministic (random) displacement induces rotation (dephas-
ing) inside this subspace. In comparison, deterministic
or random displacements along x̂S take the state outside
of this code space and can be detected by measuring
x̂S − x̂A. This is similar to the GKP infinite-energy state
|GKPideal〉 from Appendix H, for which the code space
is
{∑∞

j =−∞|p̂ = 2j
√
π + p0〉

}

p0
. Deterministic (random)

displacements along p̂ induce rotation (dephasing) inside
this subspace, while displacements along x̂ take the state
outside of this code space and can be detected by the
relevant “syndrome” measurement of x̂ mod 2

√
π [52].

APPENDIX E: PROOF OF CLAIM 4

Here, we prove Claim 4 by a Taylor expansion and again
using the fact that, in the limit of small signals σ → 0, an
optimal measurement is to project onto the eigenbasis.

In general, a unitary Ûθ may be expanded around θ = 0
to obtain the following approximation up to O(θ3):

Ûθ ≈ Û0 + θ
˙̂U0 + 1

2
θ2 ¨̂U0 (E1)

where the unitarity condition Û†
θ Ûθ = 1 implies that

0 ≈ ˙̂U†
0Û0 + Û†

0
˙̂U0 (E2)

0 ≈ ¨̂U†
0Û0 + Û†

0
¨̂U0 + 2 ˙̂U†

0
˙̂U0. (E3)

Let Ĥ := iÛ†
0
˙̂U0 and Ẑ := −Û†

0
¨̂U0 such that Ẑ = Ĥ 2 +

2iB̂, where Ĥ 2 = Re[Ẑ] = ˙̂U†
0
˙̂U0 and B̂ = 1

2 Im[Ẑ] =
(i/4)(Û†

0
¨̂U0 − ¨̂U†

0Û0).
Using this expansion around θ = 0, the random unitary

channel �σ in Eq. (37) is approximately

�σ(ρ̂) ≈ Û0ρ̂Û†
0 + σ 2

(
˙̂U0ρ̂

˙̂U†
0 + 1

2
(
¨̂U0ρ̂Û†

0 + Û0ρ̂
¨̂U†

0)

)
.

Without loss of generality, we can study Û†
0�σ(ρ̂)Û0, since

Û†
0 does not depend on the parameter θ and thus will not

affect the QFI if applied to the state after the channel. The
final state then becomes

Û†
0�σ(ρ̂)Û0 ≈ ρ̂ + σ 2

(
Ĥ ρ̂Ĥ − 1

2
(Ẑρ̂ + ρ̂Ẑ†)

)

= ρ̂ − i[σ 2B̂, ρ̂] + σ 2
(

Ĥ ρ̂Ĥ − 1
2
{Ĥ 2, ρ̂}

)
.

(E4)

This is an approximation to the master-equation evolution
of ρ̂ by the Hamiltonian σ 2B̂ and the Lindbladian jump
operator Ĥ with decay rate σ 2 in the limit of σ 2T � 1,
where T is the total evolution time. In the additive case of
Ûθ = exp(−iθĤ ), B̂ = 0 such that Ẑ = Ĥ 2 and there is no
Hamiltonian evolution. Moreover, �σ is then a decoher-
ence channel in the eigenbasis of Ĥ similarly to Eq. (16)
for Ĥ = x̂.

Since ∂σ (Û
†
0�σ(ρ̂)Û0) → 0 as σ → 0, the optimal mea-

surement (after Û†
0) is projection �̂ onto the support of

ρ̂, i.e., �̂ =∑j |ψj 〉〈ψj | in the eigenbasis {|ψj 〉}j of ρ̂
[40,51]. In particular, since Tr[�̂[σ 2B̂, ρ̂]] = 0, we may
ignore the Hamiltonian evolution in the limit of σ → 0.
By Eq. (E4), the probability to remain in the support of
ρ̂ is

p = Tr[�̂Û†
0�σ(ρ̂)Û0] = 1 + σ 2

(
〈Ĥ�̂Ĥ 〉 − 〈Ĥ 2〉

)

and the probability to leave is 1 − p = σ 2〈Ĥ�̂⊥Ĥ 〉, where
�̂⊥ = 1 − �̂ is the projection onto the null space of ρ̂.
Here, the expectation values are calculated with respect to
ρ̂. Since the QFI equals the CFI of the optimal measure-
ment,

IQ(σ = 0) = 4〈Ĥ�̂⊥Ĥ 〉, (E5)

and if ρ̂ is pure, then the QFI is

IQ(σ = 0) = 4Var[Ĥ ], (E6)

which is equal to the QFI for the deterministic unitary
case Ûσ ρ̂Û†

σ . This correspondence between the determin-
istic and random cases does not hold for σ > 0. A similar
observation for nonunitary channels in the limit of σ → 0
has been made previously in Ref. [36].

APPENDIX F: ESTIMATING A WEAK DECAY
RATE

Here, we consider the general scenario of estimating a
weak decay rate. This is inspired by the fact that Eq. (E4)
is analogous to a short-time solution of a master equation,
where the jump operator is Ĥ and σ 2 is equivalent to the
decay rate multiplied by the evolution time. We consider
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the cases of a single jump operator and multiple jump oper-
ators sharing the same weak decay rate. This problem has
previously been studied in Ref. [36], in the case of an initial
pure state.

Suppose that a quantum state ρ̂(t) evolves in time t
under the following Lindbladian master equation:

∂tρ̂(t)= γLŶ[ρ̂(t)], LŶ[ρ̂(t)] = Ŷρ̂(t)Ŷ† − 1
2
{Ŷ†Ŷ, ρ̂(t)},

where γ ≥ 0 is the decay rate, Ŷ is the (potentially non-
Hermitian) jump operator, and we seek to estimate

√
γ . In

the short-time or weak-decay limit of γTc � 1, where T is
the total evolution time and c = Tr[Ŷρ̂Ŷ†]. Then, the evo-
lution of an initial state ρ̂ is approximated by the channel
�γ , with the following Kraus representation:

�γ (ρ̂) = K̂0ρ̂K̂†
0 + K̂1ρ̂K̂†

1 ,

where the Kraus operators are

K̂0 := 1 − γT
2

Ŷ†Ŷ ≈ cos
(√

γTŶ†Ŷ
)

,

K̂1 :=
√
γTŶ ≈ sin

(√
γTŶ

)
,

such that

1 = K̂†
0 K̂0 + K̂†

1 K̂1 + O ((γT)2
)

.

Since the total evolution time T is known, we can measure
the final state �γ (ρ̂) to estimate the weak decay rate

√
γ .

Since ∂√γ�γ → 0 as
√
γ → 0, then the QFI with respect

to
√
γ is [40,51]

IQ(
√
γ = 0) = 4T〈Ŷ†�̂⊥Ŷ〉, (F1)

where �̂⊥ projects onto the null space of the state ρ̂ =∑
j pj |φj 〉〈φj | before �γ . If ρ̂ = |φ〉〈φ| is pure, then

Eq. (F1) becomes

IQ(
√
γ = 0) = 4T

(
〈Ŷ†Ŷ〉 − |〈Ŷ〉|2

)
, (F2)

which resembles the formula for the variance Var[Z] =
E
[|Z|2]− |E [Z]|2 of a complex random variable Z. If Ŷ is

Hermitian, then IQ(
√
γ = 0) = 4TVar[Ŷ], which is equiv-

alent to Eq. (E5) for γT = σ 2 and Ŷ = Ĥ . If instead ρ̂ is
mixed, then Eq. (F1) implies that the Rayleigh curse will
be avoided if and only if ρ̂ is partial rank and the jump
operator Ŷ transitions some of ρ̂ into its null space. ρ̂ may
be mixed, e.g., because �γ is preceded by another noise
channel �γ ′ with its own decay rate γ ′, which might not
be small, and jump operator Ŷ′ such that the total channel

is �γ ◦�γ ′ . It is perhaps more natural, however, to con-
sider these two processes occurring simultaneously within
the following Lindbladian master equation:

∂tρ̂(t) = γLŶ[ρ̂(t)] + γ ′LŶ′[ρ̂(t)]. (F3)

We consider an example of this scenario below.

1. Example: Qubit noise channels

Consider a qubit simultaneously undergoing amplitude
damping (loss) and dephasing such that the Lindbladian
master equation is thus

∂tρ̂(t) = γdephL
(
σ̂z
)+ γlossL

(
σ̂−
)

.

After evolving for a time T, the individual solutions
to the amplitude damping and dephasing channels are,
respectively,

�deph
(
ρ̂
) =

[
ρ1,1 ρ1,0e−γdephT

ρ∗
1,0e−γdephT ρ0,0

]
,

�loss
(
ρ̂
) =

[
ρ1,1e−γlossT ρ1,0e−γlossT/2

ρ∗
1,0e−γlossT/2 ρ0,0 + ρ1,1

(
1 − e−γlossT

)
]

,

where ρj ,k = 〈j |ρ̂|k〉. Even though [σ̂z, σ̂−] �= 0, these
channels commute such that the solution to the Lind-
bladian master equation is given by �deph ◦�loss

(
ρ̂
) =

�loss ◦�deph
(
ρ̂
)
.

This means that estimating a weak loss
√
γloss � 1 is

unaffected by dephasing, since the optimal initial state
for sensing �loss is |1〉〈1|, which is stabilized by �deph.
By Eq. (F2), the QFI with respect to

√
γloss is thus

IQ(
√
γloss) = 4T.

On the other hand, estimating a weak dephasing√
γdeph � 1 is strongly affected by loss. (We assume that

γloss > 0 is fixed and known.) Eq. (F1) implies that the QFI
for any initial state is Rayleigh cursed, since the state after
�loss is either full rank or |0〉〈0|, which has zero QFI. The
QFI with respect to √

γdeph therefore vanishes in the limit
of γdeph → 0 for any single-qubit initial state.

2. Multiple jump operators

Suppose instead that the same weak decay rate γ is
common to m jump operators {Ŷj }m

j =1 such that the master
equation is

∂tρ̂(t) = γ

m∑

j =1

LŶj
[ρ̂(t)].

Then, the evolution of ρ̂ is approximated in the limit of
γTmc � 1, where c = maxj Tr[Ŷj ρ̂Ŷ†

j ], by the following
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channel:

�γ (ρ̂) =
m∑

j =1

(
K̂0,j ρ̂K̂†

0,j + K̂1,j ρ̂K̂†
1,j

)
,

where the Kraus operators are

K̂0,j := 1√
m

− γT
√

m
2

Ŷ†
j Ŷj ,

K̂1,j :=
√
γTŶj .

By a similar argument to the m = 1 case above, then

IQ(
√
γ = 0) = 4T

m∑

j =1

〈Ŷ†
j �̂⊥Ŷj 〉. (F4)

For example, in Eq. (51), γT = σ 2, Ŷ1 = x̂, and Ŷ2 = p̂ ,
such that Eq. (F4) implies Eq. (52).

APPENDIX G: FINITE-DIMENSIONAL SYSTEMS

Here, we consider a random unitary channel acting on
a finite-dimensional system. Given a d-dimensional quan-
tum system, the random unitary channel �σ is defined
analogously to Eq. (37) as �σ(ρ̂) = ∫∞

−∞ dθ p(θ)Ûθ ρ̂Û†
θ ,

where p(θ) ∼ N (0, σ 2) and Ûθ is a θ -dependent unitary
that acts on this system. We discuss the differences between
finite-dimensional systems and the infinite-dimensional
harmonic oscillator system that we study. In particular, we
give an example where the analogous upper bound on the
ECQFI to Eq. (32) can be loose for σ > 0.

For finite-dimensional systems, the optimal initial pure
state in the limit of σ → 0 is an equal superposition of
the states corresponding to the smallest and largest eigen-
values of Ĥ to maximize 4Var[Ĥ ]. If a loss precedes the
channel, then the mixed state ρ̂ before the encoding needs
to instead optimize 〈Ĥ�̂⊥Ĥ 〉.

For σ > 0, however, the same state may no longer
be optimal, even in the lossless case. For example, con-
sider sensing the phase diffusion of a qubit, modeled as
a random rotation channel �σ with Ûθ = exp(−iθĤ) and
Ĥ = 1

2 σ̂z. The optimal initial state for σ > 0, even allow-
ing for entangled resources, is, e.g., |↑x〉 with a QFI of
σ 2/(eσ

2 − 1), as this saturates the ECQFI as proved below.
In comparison, the naive upper bound on the ECQFI, anal-
ogous to Claim 2, is 2/(σ 2 + 2), which is loose for σ > 0,
unlike for the random bosonic displacement channel.

The ECQFI for the random rotation channel �σ can be
found as follows. The channel has the following Kraus

operators:

K̂1 =
√

1
2

(
1 + e− 1

2 σ
2
)

1̂, K̂2 =
√

1
2

(
1 − e− 1

2 σ
2
)
σ̂z,

such that an upper bound on the ECQFI is [139]

I�σQ (σ ) ≤ 4

∥∥∥∥∥∥

∑

j

˙̂K†
j

˙̂Kj

∥∥∥∥∥∥
= σ 2

eσ 2 − 1
.

This implies that |↑x〉 is optimal and attains the ECQFI.

APPENDIX H: REVIEW OF FINITE-ENERGY GKP
STATES

Here, we review the families of finite-energy states that
we study, which approximate the ideal GKP state in the
high-energy limit.

The ideal GKP grid state is an unnormalized infinite-
energy single-mode state consisting of an equal superposi-
tion of infinitely many evenly spaced position eigenstates,
e.g.,

|GKPideal〉 ∝
∞∑

j =−∞
|x̂ = 2j

√
π〉 =

∞∑

j =−∞
|p̂ = 2j

√
π〉,

where |x̂ = x0〉 (|p̂ = p0〉) is the position (momentum)
eigenstate at x0 (p0) [52]. There are many different con-
tinuous families of normalized finite-energy states that
approximate the same ideal state in the high-energy limit
[143]. One such family, |GKP�〉, is defined as a superpo-
sition with a Gaussian window function of N (0, 1

2�
−2)

displaced squeezed single-mode states, with variance 1
2�

2

and evenly spaced by 2
√
π , as follows:

|GKP�〉 ∝
∞∑

j =−∞
exp
(−2π�2j 2) Û2j

√
π |SMSV 1

2�
〉,

where Ûμ = exp(−iμp̂) translates x̂ to x̂ + μ and the
position-basis wave function of the SMSV state is

|SMSV 1
2�

〉 = 1

π
1
4
√
�

∫ ∞

−∞
dx exp

(
− x2

2�2

)
|x̂ = x〉.

This family approximates the ideal GKP state, |GKPideal〉,
in the limit of � → 0. Numerically, for a fixed but small
� > 0, |GKP�〉 can be approximated by a finite sum over
j = −J , · · · , J , where some large integer J is chosen such
that 2π�2J 2 � 1.

The Wigner function of the pure initial state |GKP�〉
is shown in Fig. 7(a), where the marginals fit the Gaus-
sian envelope of N (0, 1

2�
−2). The mixed state after a loss,
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ρ̂ = �loss
η (|GKP�〉〈GKP�|), is shown in Fig. 7(b), where,

visually, the subvacuum peaks grow and move toward the
origin. Solely for the purpose of plotting, we calculate
these Wigner functions using a different family of finite-
energy GKP states |GKP′

ε〉, defined as the normalized
result of applying the nonunitary operator exp(−εn̂) to the

(a)

(b)

(c)

(d)

FIG. 7. The GKP finite-energy state for �2 ≈ 0.1: Wigner-
function and quadrature probability distributions of (a) the pure
initial state and (b) the state after a loss of η = 0.1 before the
encoding. The Gaussian envelope of the marginals for the pure
initial state is shown. Visually, the loss channel enlarges each
subvacuum peak and pulls it toward the origin. (c) Fock-basis
probabilities on a logarithmic scale shown up to n = 30 before
and after the loss, in a truncated Hilbert space of dimension
100. (d) Fock-basis complex phases of the pure initial state. The
coefficients are all real.

ideal GKP state [143]. This approximation is valid since,
when 1

24�
3 is negligible compared to 1

2�, then |GKP�〉 ≈
|GKP′

ε=�2〉, e.g., this holds for the value of ε = 0.01 used
in Fig. 7. We use this family |GKP′

ε〉 here since the Wigner
function is more efficient to calculate than in the Fock-
basis representation shown in Figs. 7(c)–7(d) [144]. While,
at low energies, the different families of finite-energy GKP
states diverge, e.g., the behavior of |GKP�〉 as N → 0
seen in Fig. 4(b) may be different from |GKP′

ε=�2〉, we are
principally interested in the high-energy limit where they
agree.

APPENDIX I: NUMERICAL METHODS

Here, we discuss the numerical methods mentioned in
Sec. V F that we use to search for the optimal initial
single-mode state in the presence of loss. We first discuss
our brute-force approach and then an alternative approach
that we have experimented with.

1. Brute-force approach

While we have observed numerically that preparing
finite-energy GKP states approaches the ECQFI for 0 <
σ 2 � η, ηA in the limit of large

〈
n̂
〉 = N , we do not know if

this is the only such family of non-Gaussian states. More-
over, while we know that the upper bound in Eq. (36) is
loose for a fixed finite

〈
n̂
〉 = N , we do not know whether

a TMSV state with noiseless ancilla is optimal. We search
here numerically for non-Gaussian states that might per-
form better.

We consider sparse superpositions of finitely many Fock
states. For simplicity, we consider superpositions equally
spaced in the number basis, i.e., |ψ〉 =∑K−1

k=0 ck|mk〉 for
some spacing m and number of peaks K . For succes-
sively larger truncations of the Hilbert space in the number
basis, we fix different values of m and K and numerically
optimize the basis coefficients {ck}K−1

k=0 to maximize the
QFI using gradient-descent and particle-swarm optimiza-
tion methods. This is a brute-force approach to finding the
optimal state.

We show an example of one such state in Fig 8,
which has been found numerically within a truncated
Hilbert space of dimension 490. This state, |ψnum.〉 =∑23

j =0 cj |20j 〉, where m = 20 and K = 24, has a QFI of
18.4 for

〈
n̂
〉 = 158.9, which is within 9% of the ECQFI

of 20 for σ 2 = 10−6 and η = 0.1. (This value of the QFI
appears stable under small perturbations in σ and η.) It
is important here that the signal and loss levels are fixed
and finite, since the intuition for this sparse state is that,
e.g., the transition to |1〉 is dominated by the signal tra-
jectory from |0〉 rather than the loss trajectory from |20〉,
as shown in Fig. 8(c). If the loss was larger or the signal
was smaller, then we would expect a larger separation m
to be necessary. The optimal measurement for this state
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(a)

(b)

(c)

FIG. 8. The Fock-basis (a) probabilities and (b) complex
phases of the non-Gaussian initial state |ψnum.〉 found by numer-
ical optimization. The probabilities after the loss of η = 0.1 but
before the encoding are a sum of binomial distributions. (c)
An example of two neighboring components. For σ = 10−3, the
transition to |1〉 is dominated by the signal trajectory |0〉 �→ |1〉
rather than the loss trajectory |20〉 �→ |1〉. However, this is not
the case for all neighboring components of |ψnum.〉.

is a superposition of number-resolving measurements, i.e.,
projections onto different linear combinations of the Fock
states, similar to the generalized parity measurements for
binomial codes [60]. We conjecture that optimizing over
superpositions of unequally spaced but still sparsely sepa-
rated Fock states in larger truncations of the Hilbert space
can get arbitrarily close to the ECQFI for any σ 2 � η.

2. Biconvex optimization

Here, we describe this task as a biconvex-optimization
problem and discuss how, in principle, it might be solved
without using a brute-force approach.

The general problem of finding the optimal protocol,
i.e., the initial state and measurement scheme, for sensing
a parameter θ encoded by a quantum channel �θ may be
formulated as follows. This problem reduces to biconvex
optimization of the function f (ρ̂, X ), given by [145,146]

f (ρ̂, X ) := −Tr
[
ρ̂
(
−�†

θ (X
2)+ �̇

†
θ (X )

)]
,

where �
†
θ is the conjugate channel of �θ in the

Heisenberg-picture sense, �̇†
θ = d�†

θ /dθ , and X ∈ L2(H)
on a Hilbert space H with finite dimension (e.g., on a trun-
cated bosonic Hilbert space). Here, the biconvexity of f
means that f is convex with respect to ρ̂ if X is held
constant and with respect to X if ρ̂ is held constant, but
not necessarily with respect to both at once. The global
minimum of f exists and is the negative of the CQFI in
Eq. (28),

I�θ ,no ancilla
Q (θ) = − inf

X
inf
ρ̂

f (ρ̂, X ), (I1)

where the order of the infima may be exchanged and
the negative sign is included as a convention such that
f is biconvex rather than biconcave. If X is the SLD
of �θ(ρ̂) with respect to θ , then f (ρ̂, X ) = −I�θ (ρ̂)Q is
the negative of the QFI given the initial state ρ̂. This
biconvex formulation can also be applied to optimize the
CQFI subject to a convex constraint. For example, the
average-energy–constrained CQFI is given by

I�θ ,N ,no ancilla
Q (θ) = − inf

X
inf
ρ̂

f (ρ̂, X )

subject to Tr
[
n̂ρ̂
] = N .

(I2)

This is a biconvex-optimization problem since the set of
density matrices that satisfy this average-energy constraint
of Tr

[
n̂ρ̂
] = N is convex.

In Ref. [145], these biconvex-optimization problems
have been proposed to be solved locally using an alternat-
ing convex search (ACS) [147]. The ACS proceeds from a
given starting point ρ̂0 by finding the corresponding SLD
X0 that solves the convex problem with |ψ0〉 held constant,
then finds the corresponding ρ̂1 that solves the convex
problem with X0 held constant, and so on. Although the
ACS is monotonic and converges, it is only a local search
and is not guaranteed to find the global minimum, although
different random starting points ρ̂0 can be used to explore
the nonconvex geometry [147].

In theory, a deterministic global optimization program
(GOP) exists for solving biconvex problems [148]. The
GOP, however, only converges in exponential time in
the number of confounding variables. Here, this would
be proportional to the dimension of the truncated Hilbert
space squared in the worst case. Although methods exist
to reduce the number of confounding variables in par-
ticular cases [149], the GOP is impractical in general.
This limitation of the GOP and success of the ACS has
previously been discussed in the context of other biconvex-
optimization problems in quantum information science
(see, e.g., Refs. [136,146,150–152]).

While the ACS has proved successful in these other
applications, e.g., it typically converges very fast to opti-
mal values from arbitrary initial states, it appears to be
less efficient for our problem of sensing σ from �σ .
We have implemented this method for calculating both
the unconstrained CQFI in Eq. (I1) and the average-
energy–constrained CQFI in Eq. (I2). In the unconstrained
CQFI case, we have observed a strong dependence on the
starting point. Starting from the vacuum state, the ACS
does not converge to or surpass the QFI of the finite-energy
GKP states even after 10 000 iterations. This method also
does not significantly improve upon the finite superposi-
tions of Fock states from the brute-force approach when
started from them. We observe improved performance
when running the ACS with random pure states. (We sam-
ple the real parts of the number-basis coefficients from a
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Biconvex optimization (ACS)
high-energy limit

FIG. 9. The QFI versus the initial average occupation num-
ber per mode for the states obtained from biconvex optimization
via the ACS with the average energy-constraint of Eq. (I2) after
500 iterations and starting from random pure states. The remain-
ing curves corresponding to the QFI from different states are the
same as the lossy case in Fig. 4(b).

Gaussian distribution with zero mean and unit variance
and then normalize the state. The imaginary parts are zero.)
However, the ACS still fails to converge to the QFI of the
TMSV and GKP states at finite average energy. Determin-
ing what aspects of the geometry of our Rayleigh-cursed
bosonic problem limit the ACS is left to future work.

Implementing the ACS for the average energy–
constrained CQFI case in Eq. (I2) leads to considerably
improved results: the ACS reaches values that are ≥ 98%
of the QFI of a finite-energy TMSV after 500 iterations for
different N . These results are shown in Fig. 9. This pro-
vides strong numerical evidence for our conjecture that the
finite-energy CQFI corresponds to the finite-energy TMSV
QFI. These results also suggest that the failure of the ACS
in the unconstrained CQFI case may be due to the bosonic
nature of this problem: we observe that the unconstrained
ACS on the truncated Hilbert space does not converge to
the QFI of the finite-energy TMSV or GKP states, but
requires an average-energy constraint that is much smaller
than the truncation does. The states that the ACS finds are
not obviously related to the TMSV or GKP states. We defer
understanding the full space of states with similar QFI at
the same average energy to future work.

APPENDIX J: CLASSICAL NOISE AND THE
OPTIMAL INITIAL STATE

Here, we prove the results discussed in Sec. V G about
the optimal initial state in the presence of significant
classical noise but no loss.

Suppose that the encoding channel is preceded by the
classical noise channel �noise


C
in Eq. (22) for a given

classical noise covariance matrix 
C such that the total
channel is �′

σ = �σ ◦�noise

C

. We consider the following

three cases in turn: 
C = diag
(

0, σ 2
p

)
, where the ran-

dom displacements from the classical noise are parallel
to (i.e., in the same quadrature, p̂ , as) those from the

signal; 
C = diag
(
σ 2

x , 0
)
, where the classical noise is per-

pendicular (i.e., in the opposite quadrature, x̂) to the signal;
and 
C = diag

(
σ 2

x , σ 2
p

)
, where the classical noise is in

both quadratures, which includes the isotropic case 
C =
diag

(
σ 2

C, σ 2
C

)
. Whether the Rayleigh curse arises depends

on 
C as shown below.

1. Parallel classical noise

For
C = diag
(

0, σ 2
p

)
, we prove that the Rayleigh curse

is unavoidable and that the optimal initial state for a given〈
n̂
〉 = N is to prepare an SMSV state.
We first note that the total channel corresponds to a

combined classical noise channel:

�′
σ = �σ ◦�noise

diag
(

0,σ 2
p

) = �noise
diag

(
0,σ 2+σ 2

p

), (J1)

where 
C = diag(0, σ 2 + σ 2
p ) adds the signal and noise in

quadrature since they are uncorrelated.
Equation (J1) holds immediately for Gaussian states, but

let us prove it for any initial state ρ̂ by direct calculation:

�′
σ (ρ̂) =

∫

R2
dα1dα2 pσ 2 (α2) pσ 2

p
(α1) Ûα2Ûα1 ρ̂Û†

α1
Û†
α2

=
∫

R2
dα1dβ pσ 2 (β − α1) pσ 2

p
(α1) Ûβρ̂Û†

β ,

where pς2(α) ∼ N (0, ς2),β = α1 + α2, and Ûα =
exp(iαx̂). By recognizing the convolution between two
Gaussian distributions, then this equals

=
∫

R

dβ pσ 2+σ 2
p
(β) Ûβρ̂Û†

β

= �noise
diag

(
0,σ 2+σ 2

p

)
(
ρ̂
)

.

By the chain rule, Eq. (J1) implies that the QFI for a given
initial state ρ̂ is

I�′
σ (ρ̂)

Q (σ ) = σ 2

σ 2 + σ 2
p
I�σ (ρ̂)Q

(
σ =

√
σ 2 + σ 2

p

)
. (J2)

Hence, the ECQFI I�′
σ

Q (σ ) for a given value of σp is
proportional to the noiseless ECQFI I�σQ (σ ) evaluated at
the signal with variance σ 2 + σ 2

p , which implies Eq. (38).
Since preparing an SMSV state is the optimal initial state
that attains the noiseless ECQFI for a fixed

〈
n̂
〉 = N , it

is also the optimal initial state in the presence of paral-
lel classical noise. The conversion factor of σ 2/(σ 2 + σ 2

p ),
however, will introduce the Rayleigh curse for σ � σp
and mean that the noiseless ECQFI cannot be recovered
regardless of the initial state.
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Before moving on to discuss the other possible cases
of classical noise, we analyze what happens when both
parallel classical noise and loss are present. Let the total
channel be

�′
σ = �σ ◦�noise

diag
(

0,σ 2
p

) ◦�loss
η .

By combining Eqs. 35 and (J2), the ECQFI is then given
in Eq. (39). By a similar argument to that made below
Eq. (J2), the optimal initial states are the same as for the
case with loss but no classical noise.

2. Perpendicular classical noise

For 
C = diag(σx, 0), we prove that, for a fixed finite
signal σ > 0, the noiseless ECQFI can be recovered in the
high-energy limit and there exist finite-energy states that
do not exhibit the Rayleigh curse as σ → 0.

Suppose that we prepare an SMSV state with
〈
n̂
〉 = N ,

then, given perpendicular classical noise, the QFI calcu-
lated from Eq. (19) is

IQ(σ ) = 4

(2ξN )
−2 ( σx

σ

)2
(

1
2 σ

2
x +ξN

)

(
σ 2

x +ξN
)2 + ξ−1

N + 2σ 2

−−−→
N→∞

4
ξ−1

N + 2σ 2
.

For a fixed finite signal σ > 0, the above limit as N → ∞
implies that the noiseless ECQFI in Eq. (32) is recov-
ered for large enough N such that σξN � σx. Note that
the optimal measurement for an SMSV state in the noise-
less case has been to first antisqueeze and then perform
a number-resolving measurement. Here, intuitively, this
antisqueezing operation squeezes the perpendicular noise
such that its effect becomes vanishing in the high-energy
limit.

Note that we assume a particular order of limits above:
limσ→0 sup|�〉 IQ(σ ). As discussed in Sec. V E, this is
the relevant order in practice because we are inter-
ested in small but finite signals σ > 0. For complete-
ness, we now briefly discuss the opposite order of limits:
sup|�〉 limσ→0 IQ(σ ). While the family of SMSV states is
optimal as N → ∞ for a fixed finite σ > 0, a given SMSV
state with fixed

〈
n̂
〉 = N exhibits the Rayleigh curse as

σ → 0 by Claim 1.
Unlike the parallel classical noise case, however, the

Rayleigh curse can be avoided using different initial states.
For example, we show in Appendix D that preparing a
TMSV state with noiseless ancilla, i.e., no noise channels
on the ancilla, with a fixed

〈
n̂
〉 = N particles per mode

yields a QFI of

IQ(σ = 0) = 8N (N + 1)
2N + 1

−−−→
N→∞

4N , (J3)

which is independent of the amount of perpendicular clas-
sical noise. This recovers the noiseless QFI of 4N for a
TMSV state in the high-energy limit, but not the noise-
less ECQFI of 4ξN ≈ 8N at σ = 0. Numerical analysis
suggests that finite-energy GKP states are also resilient to
perpendicular classical noise.

We note that the above analysis, while promising, does
not include the relevant real-world case of perpendicu-
lar noise jointly in the presence of optical loss. There,
the degradation of the squeezed state from the loss may
prevent the complete removal of perpendicular noise.

3. Classical noise in both quadratures

For 
C = diag
(
σ 2

x , σ 2
p

)
with σx, σp > 0, we combine

the above results to show that the Rayleigh curse is
inevitable, the noiseless ECQFI cannot be recovered, and
that an SMSV state remains the optimal initial state for a
fixed σ > 0 in the high-energy limit. These results apply,
e.g., to the isotropic case of 
C = diag

(
σ 2

C, σ 2
C

)
with σC >

0.
The random-displacement channels �noise

diag(σ 2
x ,0)

and

�noise
diag(0,σ 2

p )
commute with each other and obey the following

relation:

�noise
diag(σ 2

x ,σ 2
p )

= �noise
diag(σ 2

x ,0)
◦�noise

diag(0,σ 2
p )

= �noise
diag(0,σ 2

p )
◦�noise

diag(σ 2
x ,0)

,

such that, by Eq. (J1), the total channel is

�′
σ = �noise

diag(σ 2
x ,σ 2+σ 2

p )
.

Hence, similarly to Eq. (J2), the QFI for a given initial state
ρ̂ is

I�′
σ (ρ̂)

Q (σ) = σ 2

σ 2 + σ 2
p
I
(
�σ ◦�noise

diag(σ2
x ,0)

)

(ρ̂)

Q

(
σ =

√
σ 2 + σ 2

p

)
.

The optimal initial state here, therefore, is the same as
for the perpendicular case in which the total channel is
�σ ◦�noise

diag(σ 2
x ,0)

. For a fixed finite σ > 0, this implies that
preparing an SMSV state is optimal in the high-energy
limit but does not recover the noiseless ECQFI due to
the σ 2/(σ 2 + σ 2

p ) factor. In the limit of σ � σp , the same
factor leads to an unavoidable Rayleigh curse.

When we restrict ourselves to study signals above a clas-
sical noise floor, e.g., in Sec. V E, we mean signals σ above
an isotropic classical noise σC, i.e., for σ � σC, since all
protocols exhibit the Rayleigh curse below the noise floor,
i.e., for σ � σC.
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APPENDIX K: ADAPTIVE PROTOCOL

Here, we detail an adaptive protocol for our separable
measurements scheme (quadrature and number measure-
ments) that converges to a factor of 2 away from the QFIM
bound, as shown in Fig. 6(b).

Algorithmically, the adaptive measurement protocol
proceeds as follows:

Let us denote 〈p̂〉 after the kth step as μk. Since pk =
μk−1 + nk, where nk is a Gaussian random variable nk ∼
N (

0, 1
2

)
, then, by induction, μk = −(1/k)∑k

i=1 ni. This
implies that �μk = 1/

√
2k, i.e., the “size” of μk is equal

to the statistical uncertainty in estimating μ after k.
After all of the measurements are performed, we then

estimate μi with μ̃i = μi − μM and estimate σ with ς =√
(2/M )

∑
i ni − (1/M )

∑
i μ̃

2
i .

APPENDIX L: PROOF OF CLAIM 5

Here, we prove Claim 5. We first calculate the QFI and
then explicitly construct the joint measurement, which is
asymptotically optimal.

In the limit of σ → 0, the QFI with respect to σ for a
pure initial state is 4Var[Ĥ ] by Claim 4. We can assume,
without loss of generality, that μ � 1. Then, the QFI with
respect toμ can be shown to also be 4Var[Ĥ ] by expanding
the channel �σ ,μ in Eq. (46) to second order in μ and σ ,
since higher orders will not contribute to the QFI.

We now construct a joint measurement the CFIM of
which saturates these QFIs simultaneously. Without loss of
generality, we assume that 〈Ĥ 〉 = 0 and let V := Var[Ĥ ]
for the initial pure state |ψ〉. Then, |φ1〉 := (1/

√
V)Ĥ |ψ〉

and |φ2〉 := (1/
√

l)(Ĥ 2 − V)|ψ〉 are orthogonal to |ψ〉,
where l is a normalization factor.

The final state�σ ,μ(|ψ〉〈ψ |) can be expanded up to sec-
ond order in μ and σ using this orthonormal set of states
{|ψ〉, |φ1〉, |φ2〉} as

⎛

⎜⎜⎜⎜
⎝

1 − (μ2 + σ 2
)

V −iμ
√

V −1
2
(
μ2 + σ 2

)
l

iμ
√

V
(
μ2 + σ 2

)
V 0

−1
2
(
μ2 + σ 2

)
l 0 0

⎞

⎟⎟⎟⎟
⎠

,

such that we can restrict attention to the two-dimensional
subspace of |ψ〉 and |φ1〉.

We want to consider joint measurements on M copies
of the final state �σ ,μ(|ψ〉〈ψ |). Consider the following
collective states:

|ei〉 := |ψ〉⊗(i−1)|φ1〉|ψ〉⊗(M−i).

Let the symmetric state be |es〉 := (1/
√

M )
∑

i |ei〉 and let
the antisymmetric states be denoted as {|ea,i〉}M−1

i=1 . In this
collective basis, the final state is

�σ ,μ(|ψ〉〈ψ |)⊗M ≈ [1 − MV(μ2 + σ 2)
] |ψ〉⊗M 〈ψ |⊗M

− iμ
√

MV
(|es〉〈ψ |⊗M − |ψ〉⊗M 〈es|

)

+ V
(
σ 2 + μ2M

) |es〉〈es|

+ σ 2V
M−1∑

i=1

|ea,i〉〈ea,i|.

We now calculate the CFIM obtained with projective mea-
surement onto (1/

√
2)
(|ψ〉⊗M + i|es〉

)
and

{|ea,i〉
}M−1

i=1
and show that it is asymptotically optimal. The prob-
ability to be projected onto the antisymmetric sub-
space is σ 2V (M − 1), which provides the information
about σ , while the probability to be projected onto
(1/

√
2)
(|ψ〉⊗M + i|es〉

)
is

p = 1
2
(
1 − σ 2 (M − 1)V

)+
√

MVμ,

which provides the information aboutμ but no information
about σ in the limit of σ → 0. The CFIM with respect to
μ and σ in the limit of σ → 0 is

IC =
(

4MV 0
0 4 (M − 1)V

)
,

which saturates the QFIM and implies that this joint
protocol is asymptotically optimal.
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